PROGRAMME


Programme Committee

Chair:  A. Prékopa (Hungary)
Secretary:  K. Bezdek (Hungary)

Organising Committee

Chair:  Á. Császár (Hungary)
Secretary:  K. Böröczky (Hungary)

Organisers

 

·      Hungarian Academy of Sciences (HAS)

·      Loránd Eötvös University, Budapest

·      University of Debrecen

·      University of Szeged

·      János Bolyai Mathematical Society

·      Roland Eötvös Physical Society

·      Alfréd Rényi Institute of Mathematics, HAS

·      Computer and Automation Research Institute, HAS

·      Babes-Bolyai University, Kolozsvár (Cluj-Napoca, Romania)

·      Sapientia University, Marosvásárhely (Târgu Mures, Romania)

 

Sponsors

 

·      Hungarian Academy of Sciences (HAS)

·      Ministry of Education

·      Ministry of Cultural Heritage – National Cultural Fund (of Hungary)

 

 

Conference Secretariat

Viktor Richter
c/o Computer and Automation Research Institute, HAS
Kende u. 13-17.
H-1111 Budapest
Hungary
fax: +361 386 9378
e-mail: richter@sztaki.hu


CONTENTS

 

WELCOME .......................................................................................................................................  5

 

General information ...........................................................................................................  7

 

Information for participants .........................................................................................................  7

Registration and information desk ..........................................................................................  7

Internet access ...........................................................................................................................  7

Official language .......................................................................................................................  7

Room map ..................................................................................................................................  7

List of topics .............................................................................................................................  8

Programme at-a-glance ............................................................................................................  9

 

Information for authors ..............................................................................................................  10

Presentation and technical equipment ..................................................................................  10

Chairs and authors ...................................................................................................................  10

 

Evening programmes ..................................................................................................................  10

Welcoming Reception ...........................................................................................................  10

Banquet ....................................................................................................................................  10

 

Technical programME .......................................................................................................  11

Monday, 8 July ............................................................................................................................  11

Tuesday, 9 July ............................................................................................................................  15

Wednesday, 10 July ..................................................................................................................... 19

Thursday, 11 July ........................................................................................................................  23

Friday, 12 July ............................................................................................................................  27


WELCOME

 

 

Welcome to Budapest, welcome to the János Bolyai Conference on Hyperbolic Geometry. János Bolyai is generally considered the greatest figure in Hungarian science. He was only 21 years old in 1823 when he wrote to his father Farkas Bolyai, the famous professor of mathematics at Marosvásárhely, Transylvania, that he had created a new, different world. The magic world of absolute and hyperbolic geometry, as we call it today, the first systematic development of a non-Euclidean geometry. The letter was written from Temesvár, another town in Transylvania, where Bolyai had just been appointed as an army engineer (both towns belong to Romania now). Long time had to pass until the name and work of Bolyai became known worldwide. Neither he, nor the co-founder of hyperbolic geometry, the Russian Nikolai Ivanovich Lobachevskii, was able to gain recognition in his lifetime.

 

It has been a tradition in Hungary to commemorate the Bolyai anniversaries. The last one took place in 1977. However, this is the first time that we organize a meeting of international scale to honor this great mathematician whose discoveries mankind has greatly benefited from, and whose life was full of hardships and died in oblivion.

 

Hungarian mathematics is flourishing today, and we thank for this, to a large extent, to János Bolyai.

 

I wish you a good conference and a pleasant stay in the fascinating city of Budapest.

 

András Prékopa

Member of the Hungarian Academy of Sciences

Chairman of the Programme Committee

 


 GENERAL INFORMATION

 

INFORMATION FOR PARTICIPANTS

 

Registration and information desk

 

The registration and information desk will operate at the Conference venue as follows:

Monday 8 July                       08.00 - 18.00

Tuesday 9 July                       08.30 - 18.00

Wednesday 10 July               08.30 - 18.00

Thursday 11 July                   08.30 - 18.00

Friday 12 July                       08.30 - 18.00

 

Internet access

 

A number of PCs with internet access are available during the Conference hours on the 2nd floor of the Academy.

 

Official language

 

The official language of the Conference is English. No simultaneous translation will be available.

 

Please note:

Some of the parallel sessions on Friday, 12 July will run in Hungarian, without translation. These sessions are:

 

14.00 – 15.30

 

Room D:   Teaching and visualisation of hyperbolic geometry I.

Room E:    The life and works of Janos Bolyai I.

 

16.00 – 17.30

 

Room B:    The heritage of Bolyai I.

Room C:    The heritage of Bolyai II.

Room D:   Teaching and visualisation of hyperbolic geometry II.

Room E:    The life and works of Janos Bolyai II.

 

Room map

 

A room map on the inner front cover helps to find the session and function rooms.


LIST OF TOPICS

 

1:           Hyperbolic geometry and differential geometry

 

2:           Radon transforms and integral geometry in hyperbolic spaces

 

3:           Hyperbolic manifolds and groups

 

4 *:        The heritage of Bolyai

 

5:           Hyperbolic geometry and discrete geometry

 

6:           Applications of hyperbolic geometry and its extensions in physics and other sciences

 

7:           Applications of non-Euclidean geometry in relativity

 

8:           Non-Euclidean geometry – foundations of physics – foundations of mathematics

 

9:           Hyperbolic geometry and its applications

 

10 *:     Teaching and visualisation of hyperbolic geometry

 

11:         Applications of hyperbolic geometry in combinatorics and in computational geometry

 

12:         Hyperbolic geometry and foundations of geometry

 

13:         The role of hyperbolic geometry in the history and philosophy of mathematics and in cultural history

 

14:         Teaching and visualisation of hyperbolic geometry

 

15 *:     The life and works of Janos Bolyai

 

 

 

 

Important notice:

 

Parallel sessions 4*, 10* and 15* will run in Hungarian, without translation.

 


PROGRAMME AT-A-GLANCE

by topics

 

 

 

Room A

Room B

Room C

Room D

Room E

Monday

8 July

09.00 – 10.30

Opening ceremony & Plenary session I.: H.S.M. Coxeter

10.30 – 11.00

Coffee break

11.00 – 12.30

Plenary session II.: Walter Benz, Jeremy Gray

12.30 – 14.00

Lunch break

14.00 – 15.30

1

3

5

6

11

15.30 – 16.00

Coffee break

16.00 – 17.30

1

3

5

6

11

18.00 – 20.00

Welcoming reception

Tuesday

9 July

09.00 – 10.30

Plenary session III.: László Lovász,  Robert Connelly

10.30 – 11.00

Coffee break

11.00 – 12.30

Plenary session IV.: Charles Radin, Jeffrey R. Weeks

12.30 – 14.00

Lunch break

14.00 – 15.30

1

3

5

7

12

15.30 – 16.00

Coffee break

16.00 – 17.30

1

3

5

7

12

Wednesday

10 July

09.00 – 10.30

Plenary session V.: E.B. Vinberg, Jim Cannon

10.30 – 11.00

Coffee break

11.00 – 12.30

Plenary session VI.: Igor Rivin, John G. Ratcliffe

12.30 – 14.00

Lunch break

14.00 – 15.30

1

3

5

8

13

15.30 – 16.00

Coffee break

16.00 – 17.30

1

3

5

8

14

Thursday

11 July

09.00 – 10.30

Plenary session VII.: Sigurdur Helgason, Bernd Stratmann

10.30 – 11.00

Coffee break

11.00 – 12.30

Plenary session VIII.: Abraham A. Ungar, A.S. Szalay

12.30 – 14.00

Lunch break

14.00 – 15.30

1

3

5

8

14

15.30 – 16.00

Coffee break

16.00 – 17.30

1

3

5

9

14

20.00 – 22.00

Banquet

Friday

12 July

09.00 – 10.30

Plenary session IX.: Zoltán Perjés, Samu Benkő

10.30 – 11.00

Coffee break

11.00 – 12.30

Plenary session X.: Elemér Kiss, Imre Toth

12.30 – 14.00

Lunch break

14.00 – 15.30

1

3

5

10 *

15 *

15.30 – 16.00

Coffee break

16.00 – 17.30

2

4 *

4 *

10 *

15 *

 


INFORMATION FOR AUTHORS

 

Presentation and technical equipment

 

Time for oral presentation in parallel sessions is 30 minutes. For the benefit of both the audience and the next speaker, all speakers are kindly requested to strictly adhere to the time limit that otherwise will be enforced by the session chairs. 

 

Overhead projectors and data/video beamers will be available in the session rooms. Authors wishing to give a computer presentation are kindly asked to contact the Registration and information desk at their earliest convenience.

 

Chairs and authors

 

Session chairs and presenting authors should meet in the session rooms 10 minutes before the sessions start.

 

EVENING PROGRAMMES

 

Welcoming Reception

 

Monday, 8 July,  18.00 – 20.00

Hungarian Academy of Sciences

Picture Gallery, 3rd floor
(1051 Budapest, Roosevelt ter 9.)

All registered participants are cordially invited.

 

Banquet

Thursday, 11 July,  20.00 – 22.00

EUROPA” Boat

The boat will start exactly at 20.00 from the boat station at the Hungarian Academy of Sciences. Boarding from 19.30.

 

All registered participants are cordially invited. Please, wear your name badge which entitles you to enter the boat.


 TECHNICAL PROGRAMME

 

 

Monday, 8 July

 

09.00 – 09.45    Opening Ceremony

Room A

 

09.45 – 10.30    Plenary session I.

Room A

 

An Absolute Property of Four Mutually Tangent Circles

COXETER H.S.M.

 

10.30 – 11.00    Coffee break

 

11.00 – 12.30    Plenary session II.

Room A

 

Hyperbolic Geometry, Dimension–Free

BENZ Walter

 

Gauss and non-Euclidean geometry

GRAY Jeremy

 

12.30 – 14.00    Lunch break

 

14.00 – 15.30    1: Hyperbolic geometry and differential geometry I.

Room A

 

The generalized Cayley map from an algebraic group to its Lie algebra

KOSTANT Bertram - MICHOR Peter W.

 

Hyper-Kähler symmetric spaces

ALEKSEEVSKY D. V. - CORTES V.

 

Advances in metric spaces with curvature bounds

BISHOP Richard L.

 

14.00 – 15.30    3: Hyperbolic manifolds and groups I.

Room B

 

A survey on the weak hyperbolization conjecture

KAPOVICH Michael


Endomorphisms of the hyperbolic plane and its cousins

STROPPEL Markus

 

14.00 – 15.30    5: Hyperbolic geometry and discrete geometry I.

Room C

 

Sphere Packing in Hyperbolic Space

COHN Henry - HALES Thomas - LURIE Jacob - SARNAK Peter

 

On the closeness of sphere packings in spaces of constant curvature

H. TEMESVÁRI Ágota

 

Improving the Rogers-Boroczky upper bound for the density of congruent ball packings in 3-dimensional spaces of constant curvature

BEZDEK Károly

 

14.00 – 15.30    6: Applications of hyperbolic geometry and its extensions in physics and other sciences I.

Room D

 

Construction of spacetimes in terms of invariant objects

BRADLEY Michael

 

Gravitation in 5 dimensions

GERGELY László Árpád

 

On the existence of spacetime symmetries

RÁCZ István

 

14.00 – 15.30    11: Applications of hyperbolic geometry in combinatorics and in computational geometry I.

Room E

 

A random walk round hyperbolic spaces

CAMERON Peter J.

 

Mixed complexes and mixed surfaces

EDELSBRUNNER Herbert

 

Finite Bolyai Geometry and Extremal Graph Theory

SZŐNYI Tamás

 

15.30 – 16.00    Coffee break


16.00 – 17.30    1: Hyperbolic geometry and differential geometry II.

Room A

 

Isospectral pairs of metrics on balls spheres and other manifolds with different local geometries

SZABO Zoltan I.

 

Nonlinear Problems in Geometry: A Progress Report

KAZDAN Jerry L.

 

Certain metrics on Rł x R+

OTSUKI Tominosuke

 

16.00 – 17.30    3: Hyperbolic manifolds and groups II.

Room B

 

Canonical flattening of hyperbolic manifolds

AITCHISON Iain

 

Andreev's Theorem and Euler  Characteristics of  4-manifolds

DAVIS Michael – OKUN Boris

 

Double limit Theorem for Schottky Groups

KIM Inkang - OHSHIKA Ken`ichi

 

16.00 – 17.30    5: Hyperbolic geometry and discrete geometry II.

Room C

 

Symmetric trivalent graphs embedded in hyperbolic honeycombs

WEISS Asia Ivic - MONSON Barry

 

Tilings by reducible and irreducible parallelotopes

ORDINE Andrei

 

Gain (voltage) graphs and tilings of manifolds

RYBNIKOV Konstantin

 

16.00 – 17.30    6: Applications of hyperbolic geometry and its extensions in physics and other sciences II.

Room D

 

On the classification of fundamental physical theories with utilisation of Bolyai-parameter of first Non-Euklidean geometry

TORÓ Tibor


Geometry, Negative Curvature, and Dynamics: From Bolyai to Sinai

SIMÁNYI Nándor

 

Vacuum general relativity from a Chern-Simons functional

SZABADOS László B.

 

16.00 – 17.30    11: Applications of hyperbolic geometry in combinatorics and in computational geometry II.

Room E

 

Hyperbolic and Projective Geometry in Constraint Programming for CAD

SALIOLA Franco - WHITELEY Walter

 

Two applications of the slplitting method: the 3D tiling of the rectangular dodecahedra and cellular automata on infinigrids of IH2

MARGENSTERN Maurice - SKORDEV Gencho - GRIGORIEFF Serge

 

Hochschild homology of Clifford algebras and scissors congruences

GREBET Jean-Guillaume

 

18.00 – 20.00    Welcoming Reception

Hungarian Academy of Sciences

Picture Gallery Hall, 3rd floor


 


Tuesday, 9 July

 

09.00 – 10.30    Plenary session III.

Room A

 

Hyperbolic Spaces and Graph Representations

Lovász László

 

Hyperbolic Structures, Similarities and Dissimilarities with Euclidean Structures

Connelly Robert

 

10.30 – 11.00    Coffee break

 

11.00 – 12.30    Plenary session IV.

Room A

 

The symmetry of optimally dense packings

Radin Charles

 

Visualizing Hyperbolic Geometry

Weeks Jeffrey R.

 

12.30 – 14.00    Lunch break

 

14.00 – 15.30    1: Hyperbolic geometry and differential geometry III.

Room A

 

Loops and groups

Strambach Karl

 

Constructions of Complex and Minimal Submanifolds of a Quaternionic Kähler Manifold: A Report

Marchiafava Stefano

 

Hyperbolic geometry, Bol loops and symmetric spaces

Nagy Péter Tibor


14.00 – 15.30    3: Hyperbolic manifolds and groups III.

Room B

 

On the thin part of hyperbolic manifolds

Kellerhals Ruth

 

Hyperbolic structure on a complement of tori in the 4-sphere

Ivansic Dubravko

 

Eigenvalue fields for hyperbolic manifolds

Hamilton Emily

 

14.00 – 15.30    5: Hyperbolic geometry and discrete geometry III.

Room C

 

Flexible Octahedra in the Hyperbolic Space

Stachel Hellmuth

 

Flexible polyhedra in the Minkowski 3-space

Alexandrov Victor

 

Moveable Models of Polyhedra

Röschel Otto

 

14.00 – 15.30    7: Applications of non-Euclidean geometry in relativity I.

Room D

 

Spacetime canonical gravity

Kuchar Karel V.

 

Hyperbolic Geometry in Special and General Relativity

Urbantke Helmuth K.

 

Twistor theory and the Quantum Hall Effect in four dimensions

Sparling George A. J.

 

14.00 – 15.30    12: Hyperbolic geometry and foundations of geometry I.

Room E

 

The axiomatic foundation of hyperbolic and absolute geometry

Pambuccian Victor


The Generating Motions and the Convexity of a well-known Curve in Hyperbolic Geometry

Ruoff Dieter

 

Geometries with several non-secants through a point with respect to a given straight line

Klotzek Benno

 

15.30 – 16.00    Coffee break

 

16.00 – 17.30    1: Hyperbolic geometry and differential geometry IV.

Room A

 

Second order Contact of Minimal Surfaces

Duistermaat J.J.

 

Moduli for Spherical Maps and Minimal Immersions of Homogeneous Spaces

Toth Gabor

 

16.00 – 17.30    3: Hyperbolic manifolds and groups IV.

Room B

 

On isometry group of cyclic branched coverings of 2-bridge knots

Vesnin Andrei

 

Representation of (1,1)-knots via the mapping class group of the twice punctured torus

Mulazzani Michele - Cattabriga Alessia

 

16.00 – 17.30    5: Hyperbolic geometry and discrete geometry IV.

Room C

 

Relaxation, new combinatorial and polynomial algorithms for the linear feasibility problem

Betke Ulrich

 

Extremality Properties of Regular Simplices in Hyperbolic Space

Peyerimhoff Norbert

 

A volume formula for generalized hyperbolic tetrahedra

Ushijima Akira


16.00 – 17.30    7: Applications of non-Euclidean geometry in relativity II.

Room D

 

Charged relativistic fluid configurations

Fodor Gyula

 

Evolution of spins in binary systems

Vasúth Mátyás

 

The sensitive dependence on initial conditions in terms of curvature invariants

Szydlowski M. - Krawiec A.

 

16.00 – 17.30    12: Hyperbolic geometry and foundations of geometry II.

Room E

 

The analytic continuation of hyperbolic space

Cho Yunhi - Kim Hyuk

 

On the Hausdorff series of local analytic Bol loops

Nagy Gábor P.


 

Wednesday, 10 July

 

09.00 – 10.30    Plenary session V.

Room A

 

Hyperbolic reflection groups

Vinberg E.B.

 

Optimizing the geometry of cell patterns in the plane

Cannon Jim

 

10.30 – 11.00    Coffee break

 

11.00 – 12.30    Plenary session VI.

Room A

 

Geometry of Polyhedra

Rivin Igor

 

The Geometry of Hyperbolic Manifolds of Dimension at least Four

Ratcliffe John G.

 

12.30 – 14.00    Lunch break

 

14.00 – 15.30    1: Hyperbolic geometry and differential geometry V.

Room A

 

Variational Problems in Higher-Order Hamilton Spaces

Miron Radu

 

On the rectifiability condition of a second order ordinary differential equation

Bácsó Sándor

 

Geodesics of two-step nilpotent Lie groups

HOMOLYA Szilvia

 

14.00 – 15.30    3: Hyperbolic manifolds and groups V.

Room B

 

Hausdorff dimension of diophantine geodesics in hyperbolic manifolds

Paulin Frederic


Topological mixing in CAT(-1) spaces

Charitos Charalambos - Tsapogas Georgios

 

Hyperbolic Coxeter groups of large dimension

Januszkiewicz Tadeusz - Swiatkowski Jacek

 

14.00 – 15.30    5: Hyperbolic geometry and discrete geometry V.

Room C

 

Packings of finite collections of compact sets

Bleicher Michael N. - Heppes Aladár

 

Four Sphere Packing Problems

Wills J. M.

 

On the Structure of Densest Finite Packings

Schürmann Achill

 

14.00 – 15.30    8: Non-Euclidean geometry – foundations of physics – foundations of mathematics I.

Room D

 

Deciding Arithmetic in Malament-Hogarth Spacetimes

Hogarth Mark

 

Non-Turing computations via Malament-Hogarth space-times

Etesi Gábor - Németi István

 

Logic and relativity

Németi István

 

14.00 – 15.30    13: The role of hyperbolic geometry in the history and philosophy of mathematics and in cultural history

Room E

 

Misconceptions about Isometrically Embedding the Hyperbolic Plane in Euclidean 3-Space

Henderson David W.

 

Pictures from the History of  Non-Eucledean Geometry in Hungary

Munkácsy Katalin


Bolyai's Introduction to Non-Euclidean Geometry as an Arguing According to Non-Classical Logic

Drago Antonio

 

15.30 – 16.00    Coffee break

 

16.00 – 17.30    1: Hyperbolic geometry and differential geometry VI.

Room A

 

Holonomy, geometry and topology of grassmann manifolds

Bokan N. - Matzeu P. - Rakic Z.

 

Rank two hypersurfaces of hyperbolic spaces and their intrinsic analogues in Riemannian geometry

Kowalski Oldrich

 

Comparison theorems on volume and d-mean curvature for convex hypersurfaces in Hyperbolic and Hadamard manifolds

Miquel Vicente

 

16.00 – 17.30    3: Hyperbolic manifolds and groups VI.

Room B

 

Hyperbolic manifolds with convex boundary

Schlenker Jean-Marc

 

A unified description of the hyperbolic symmetric spaces

Korányi Ádám

 

On an infinitive hyperbolic orbifold series

Szirmai Jenő

 

16.00 – 17.30    5: Hyperbolic geometry and discrete geometry VI.

Room C

 

Finite coverings by equal hyperbolic circles

Böröczky Károly Jr.

 

Optimally dense and completely saturated packings of hyperbolic space

Bowen Lewis

 

On Fejes Tóth's Solidity Conjecture

Heppes Aladár


16.00 – 17.30    8: Non-Euclidean geometry – foundations of physics – foundations of mathematics II.

Room D

 

A system of axioms for hyperbolic geometry

Schutz John W.

 

Lorentz's theory and relativity theory are completely identical

Szabó E. László

 

Decidability and undecidability issues in special relativity theory

Vályi Sándor

 

16.00 – 17.30    14: Teaching and visualisation of hyperbolic geometry I.

Room E

 

Visualising new universes: Learning hyperbolic geometry in the context of a computational microworld

Stevenson Ian

 

Introduction to hyperbolic geometry using Cabri

Lister Tim

 

Teaching the Poincaré Model of Hyperbolic Geometry with the Help of Sketchpad, Version 4

RADNAI-SZENDREI Julianna


 

Thursday, 11 July

 

09.00 – 10.30    Plenary session VII.

Room A

 

Non-Euclidean Analysis and Radon Transforms

Helgason Sigurdur

 

The Exponent of Convergence of Kleinian Groups: on a Theorem of Bishop and Jones

Stratmann Bernd

 

10.30 – 11.00    Coffee break

 

11.00 – 12.30    Plenary session VIII.

Room A

 

Placing the Hyperbolic Geometry of Bolyai and Lobachevski Centrally in Special Relativity Theory: An Idea Whose Time Has Come Back

Ungar Abraham A.

 

Measuring the Curvature of the Universe

Szalay A.S.

 

12.30 – 14.00    Lunch break

 

14.00 – 15.30    1: Hyperbolic geometry and differential geometry VII.

Room A

 

L.c.a.K.-structure and almost contact structure

Kashiwada Toyoko

 

Roulettes in Hyperbolic Planes with Constant Curvature

Bjelica Momcilo

 

Homogeneity of isoparametric hypersurfaces and of compact generalized polygons

Grundhöfer Theo

 

14.00 – 15.30    3: Hyperbolic manifolds and groups VII.

Room B

 

Classification of non-free two-parabolic generator Kleinian groups

Agol Ian


Automorphisms groups and arithmeticity of Riemann surfaces

Belolipetsky Mikhail

 

Two-generator hyperbolic orbifolds

Klimenko Elena - Kopteva Natalia

 

14.00 – 15.30    5: Hyperbolic geometry and discrete geometry VII.

Room C

 

The Beckman Quarles Theorem for rational d-spaces

Zaks Joseph

 

Selected topics in  discrete and  hyperbolic geometries

Bezdek András

 

Circle-covering of the Hyperbolic Plane

Böröczky Károly

 

14.00 – 15.30    8: Non-Euclidean geometry – foundations of physics – foundations of mathematics III.

Room D

 

On Gödel’s rotating universe and the logical analysis of relativity

Madarász Judit - Tőke Csaba

 

Relativity and logic

Andréka Hajnal

 

An axiomatic approach for relativistic geometries

Sági Gábor

 

14.00 – 15.30    14: Teaching and visualisation of hyperbolic geometry II.

Room E

 

Trileg mini - geometry as a didactical tool

Hejny Milan

 

The Role of Physical Models in Teaching Hyperbolic Geometry

Taimina Daina

 

Hyperbolic Exploration in a Dynamic Klein Model

Flesner David E.

 

15.30 – 16.00    Coffee break


16.00 – 17.30    1: Hyperbolic geometry and differential geometry VIII.

Room A

 

Geodesic Bol Loops of Non-Euclidean Spaces

Figula Ágota

 

Growth tightness of negatively curved manifolds

Sambusetti Andrea

 

Finsler geometry in the tangent bundle

Tamássy Lajos

 

16.00 – 17.30    3: Hyperbolic manifolds and groups VIII.

Room B

 

Bounding Measures of sets in non-Euclidean spaces

Prékopa András

 

Volumes and  isometry groups of  hyperbolic 3-manifolds

Mednykh Alexander D.

 

Classification of Tile-Transitive 3-Simplex Tilings and their Realizations in Homogeneous Geometries

Molnár Emil - Prok István - Szirmai Jenő

 

16.00 – 17.30    5: Hyperbolic geometry and discrete geometry VIII.

Room C

 

Recent developments concerning the prime-power conjecture for finite projective planes

Blokhuis Aart

 

Touching pairs problems and edge-isoperimetric inequalities

Brass Peter

 

On thickness of <p,q> point systems

Horváth Jenő

 

16.00 – 17.30    9: Hyperbolic geometry and its applications

Room D

 

Two infinite sequences of perfect lattice polytopes

Erdahl Robert


Are the gravitational waves quantised?

Lovas István

 

Janos Bolyai's arithmetic problem and its extensions

Kiss Elemér - Sándor József

 

16.00 – 17.30    14: Teaching and visualisation of hyperbolic geometry III.

Room E

 

Art and the Visualization of Hyperbolic Geometry

Dunham Douglas

 

Teaching Bolyai's 'Appendix' Through Comparative Geometry

Lénárt István

 

20.00 – 22.00    Banquet

EUROPA” Boat

 

Friday, 12 July

 

09.00 – 10.30    Plenary session IX.

Room A

 

Black hole perturbations

Perjés Zoltán

 

The Bolyai's and the *-s

Benkő Samu

 

10.30 – 11.00    Coffee break

 

11.00 – 12.30    Plenary session X.

Room A

 

Janos Bolyai’s New Face

Kiss Elemér

 

To Be or Not to Be: the non-Euclidean Controversy and the Reception of the non-Euclidean Geometry

Toth Imre

 

12.30 – 14.00    Lunch break

 

14.00 – 15.30    1: Hyperbolic geometry and differential geometry IX.

Room A

 

Homogeneous foliations on hyperbolic spaces

Berndt Jürgen

 

How far does hyperbolic geometry generalize?

Szenthe János

 

14.00 – 15.30    3: Hyperbolic manifolds and groups IX.

Room B

 

Partition surfaces and ovals in topological translation planes

Löwen Rainer

 

Tilings of the Hyperbolic Space by Some Series of Truncated Simplices

Stojanovic Milica


Isoperimetric inequalities for hyperbolic and  spherical polyhedra and link orbifolds

Pashkevich Marina

 

14.00 – 15.30    5: Hyperbolic geometry and discrete geometry IX.

Room C

 

The minimum area of a simple polygon with given side lengths

Böröczky K. - Kertész G. - Makai E. Jr.

 

Hyperbolic Gameboards

Harborth Heiko

 

Asymptotic behavior of convex sets in hyperbolic plane

Gallego Eduardo - Solanes Gil

 

 

14.00 – 15.30    10: Teaching and visualisation of hyperbolic geometry I.

Room D

 

The elements of the Bolyai geometry in teacher’s training and in the school

Horváth Jenő

 

What ought to be Taught about Janos Bolyai in the Secondary Schools?

Kálmán Attila

 

Illustrated Bolyai Geometry (A computer software utilising the tools of dynamic geometry)

SZILASSI Lajos

Session running in Hungarian, without translation.

 

 

14.00 – 15.30    15: The life and works of Janos Bolyai I.

Room E

 

The History of Bolyai Family

Oláh-Gál Róbert

 

The Bolyai Town and Cult

Barabássy Sándor

 

Developement of the Bolyai cult

KOLUMBÁN József

Session running in Hungarian, without translation.


15.30 – 16.00    Coffee break

 

16.00 – 17.30    2: Radon transforms and integral geometry in hyperbolic spaces

Room A

 

Inversion of the Radon transform on Grassmann manifolds

GRINBERG Eric - RUBIN Boris

 

Integral geometry and Crofton formulas in non-euclidean spaces

FERNANDES Emmanuel

 

 

16.00 – 17.30    4: The heritage of Bolyai I.

Room B

 

Tetrahedron Theorem in Bolyai-Lobachevsky Geometry

Wagner István

 

Bolyai the Military Engineer

Ács Tibor

 

An American mathematician for János Bolyai

Filep László

Session running in Hungarian, without translation.

 

 

 

16.00 – 17.30    4: The heritage of Bolyai II.

Room C

 

A World in a Grain of Sand

Máthé Márta

 

The Bolyai-cult in Marosvásárhely

Márton Annamária

 

The Great Master's Apostles (Disciples of Farkas Bolyai)

Bodó Előd Barna

 

Janos Bolyai pioneer of the new theory of gravitation

Gábos Zoltán

Session running in Hungarian, without translation.

 

 

16.00 – 17.30    10: Teaching and visualisation of hyperbolic geometry II.

Room D

 

Teching Bolyai Geometry for Disadvantaged Pupils

Munkácsy Katalin

 

Non-Euclidean geometries in teacher's training? Yes!

Makara Ágnes

 


Bolyai geometry - for the public

Lénárt István

Session running in Hungarian, without translation.

 

 

16.00 – 17.30    15: The life and works of Janos Bolyai II.

Room E

 

Diseases of Bolyai Janos revealed from medical documents of his time

Jung János

 

Role of Göttingen in Farkas Bolyai's and János Bolyai's lives

Gajzágó Mária Irma

 

The foundation of hyperbolical differential geometry in the Appendix

WESZELY Tibor

Session running in Hungarian, without translation.