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Abstract— This paper is concerned with the problem of the
deconvolution, which consists in recovering the unknown input
of a linear system from a noisy version of the output. The
case of a system with quantized input is considered and a
low-complexity algorithm, derived from decoding techniques,
is introduced to tackle it. The performance of such algorithm
is analytically evaluated through the Theory of Markov Pro-
cesses. In this framework, results are shown which prove the
uniqueness of an invariant probability measure of a Markov
Process, even in case of non-standard state space. Finally, the
theoretic issues are compared with simulations’ outcomes.

I. INTRODUCTION

Consider the following time-invariant linear system x′(t) = ax(t) + bu(t) t ∈ [0, T ]
y(t) = cx(t)
x(0) = 0

(1)

where u(t), x(t) and y(t) respectively are the input, the
state function and the output; a, b and c are real constants,
[0, T ] is a possibly infinite time horizon. u(t) is supposed to
be unknown, while y(t) is accessible, but corrupted by an
observational, additive noise n(t): the available data is then

r(t) = y(t) + n(t). (2)

The aim of this work is to reconstruct u(t) from r(t), that
is, to reverse the input-output convolution integral:

r(t) = cx(t) + n(t) = cb

∫ t

0

ea(t−s)u(s)ds+ n(t). (3)

Such an inversion, properly known as deconvolution, has
been receiving considerable attention since the last 1960s,
[14], [15]. Its study, motivated by the ubiquitous engineer-
ing and technological applications (for example, seismology
and geophysics, astronomy, image processing, industrial and
medical systems, see, e.g., [2], [3], [4], [12], [13]), has been
attracting interest among mathematicians for its ill-posed
and ill-conditioned nature. Indeed, the integral (3) cannot
be directly inverted, since this may produce non-unique
and faulty solutions; the purpose is then to approximate
the correct input u(t) by the means of some estimation
algorithm.

In order to achieve this, it is desirable to have some prior
information on the input, which will drive the development
of a suitable estimation procedure. In this work, we assume
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u(t) to be quantized over a finite number of levels, this
choice being motivated by the recent digitalization of many
technological processes and devices. In the practice, this
condition can model systems whose input is a switch, an
actuator or a signal monitoring the (discrete) state of an
industrial process. A goal of such study is, for instance, the
design of fault detection devices.

The applications motivate also our interest for the on-line
estimation algorithms, that is, for procedures that deconvolve
the system during the course of transmission (see, e.g., [5],
[6]); for instance, in a fault detection problem an eventual
defect should be revealed as soon as possible and not when
the process has been completed.

Furthermore, we will show that the quantized nature of the
input makes our system analogous to a digital transmission
paradigm. This inspires an Information-Coding description
of the problem and suggests to exploit decoding techniques
instead of classical estimation algorithms.

Finally, low-complexity is also desirable for the sake of
the implementation.

All these elements are combined in the so-called One State
Algorithm, that has been introduced in [8] for a differen-
tiation system, i.e., in a simplified deconvolution problem.
The aim of this work is to extend its use to general linear
systems such as (1). In particular, in the next a theoretic
analysis is developed, which provides a rigorous description
of the algorithm. Such analysis is conducted in a probabilistic
setting: the algorithm’s pattern, in fact, can be modeled as
a Markov Process and considering the case of long-time
transmission (that is, [0, T ] is infinite), the Ergodic Theory
of Markov Processes can be exploited to infer the behavior
of the proposed deconvolution technique. Furthermore, a
contribution is provided in this framework for what concerns
the study of the invariant probability measures, that will
be studied through the theory of metric spaces and by the
application of the Banach Fixed Point Theorem.

The paper is organized follows. In the next section,
we make some further assumptions and we describe the
evolution of the system. In Section III, we introduce the
Information-Coding description of the problem, which moti-
vates the introduction of the One State Algorithm. The algo-
rithm is presented in Section IV and theoretically analysed
in Section V. Finally, Sections VI and VII are devoted to
simulations, comparisons and conclusive considerations.

A. Notation, List of Symbols and Abbreviations

• Given a subset A of a set Ω, 1A : Ω → {0, 1} is the
indicator function, defined by 1A(x) = 1 if x belongs
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to A and 1A(x) = 0 otherwise.
• erfc is the complementary error function, defined by

erfc(x) = 2√
π

∫ +∞
x

e−sds for any x ∈ R.
• Discrete probabilities are indicated with P, while P (·, ·)

denotes the transition probability kernel of a Markov
Process. E is the stochastic mean.

• Cb(Ω) is the space of the bounded continuous functions
on Ω.

• B(Ω) is the Borel σ-algebra of Ω.
• Given a bounded measurable function v on (Ω,B(Ω)),

we denote by Pv the bounded measurable function on
(Ω,B(Ω)) defined by (Pv)(x) =

∫
Ω
v(y)P (x, dy).

• Given a measure µ on (Ω,B(Ω)), we define the measure
(µP )(B) =

∫
Ω
P (x,B)µ(dx), B ∈ B(Ω) (see [8,

Paragraph 4.2.1]).
• f ∈ m-Lip(Ω) indicates that the function f : Ω→ R is

Lipschitz of constant m.

II. PROBLEM STATEMENT

The following assumptions are made on system (1):
Assumption 1: the input is quantized on two levels, say 0

and 1, and the switches from one level to the other one can
occur only at time instants kτ , τ > 0, k ∈ N. For simplicity,
the time step τ is such that T/τ = K ∈ N. Therefore, we
can write:

u(t) =
K−1∑
k=0

uk1[kτ,(k+1)τ [(t), uk ∈ U = {0, 1} (4)

Now, u(t) is completely determined by the bit sequence
(u0, . . . , uK−1).

Assumption 2: the lecture of r(t) is performed only
at the same time instants kτ , k = 1, . . . ,K, hence the
available information is the sequence (r1, . . . , rK) where
rk = r(kτ) = y(kτ) + n(kτ).

Assumption 3: the system is stable, that is a < 0. The case
a = 0 has already been studied in [8].
Assumption 1 induces a discrete nature also for x(t): given
the expression (4), we have

x(kτ) = beakτ
∫ kτ

0

e−as
K−1∑
h=0

uh1[hτ,(h+1)τ [(s)ds

= beakτ
k−1∑
h=0

uh

∫ (h+1)τ

hτ

e−asds

=
b

a
(eaτ − 1)ea(k−1)τ

k−1∑
h=0

uhe
−ahτ .

(5)

Letting xk = x(τk), q = eaτ , w = − b
a (1−q), we can write

the following recursive formula:

xk = qxk−1 + wuk−1. (6)

By trivial computations, we obtain also

xk = w
k−1∑
h=0

uk−h−1qh

which shows that each xk assumes values in the set

Xk = w

{
k−1∑
h=0

µhqh, µh ∈ {0, 1}

}

of the binary polynomials of degree at most k−1 multiplied
by w. The cardinality of Xk is then 2k and Xk ⊂ Xk+1 for
any k ∈ N. If we let K tend to infinity, we can define the
more general state set

X = w

{ ∞∑
h=0

µhqh, µh ∈ {0, 1}

}

that includes all the xk’s, k ∈ N. The structure of X will
play a fundamental role in the deconvolution’s performance.
For computational simplicity, from now onwards let

τ = 1 and b > 0.

Moreover, for notational simplicity in this section we sup-
pose w = 1, so that X ⊆ [0, 1

1−q ], with q ∈ (0, 1)
by Assumption 3. Now, two possible cases have to be
distinguished.

A. Case q ∈
[

1
2 , 1
)
.

If q ∈
[

1
2 , 1
)
, then X ≡

[
0, 1

1−q

]
. This can be proved

as follows. Given any x ∈
[
0, 1

1−q

]
, we construct a series∑∞

h=0 µhq
h = x, µh ∈ {0, 1} defining on by one the coef-

ficients µh. The series being positive termed, the procedure
is:
For h = 0, fix {

µ0 = 1 if x ≥ 1
µ0 = 0 otherwise

For h = 1, 2, 3, . . . , fix{
µh = 1 if x ≥

∑h−1
i=0 µi + qh

µh = 0 otherwise

For any h ∈ N, we then obtain a polynomial
∑h
i=0 µiq

i ≤ x.
In case of equality, the property is proved; otherwise, we have
to show that

x ≤
h∑
i=0

µiqi +
∞∑

i=h+1

qi (7)

This is obvious if µi = 1 for any i = 0, . . . , h. Otherwise,
if there exists at least one null coefficient between 0 and h,
let us consider the null coefficient with greater index, that is,
pick j such that µj = 0 and µi = 1 for any i = j+1, . . . , h.
Then, x <

∑j−1
i=0 µiq

i + qj , otherwise it should have been
µj = 1. Now, in order to prove the bound (7) it is sufficient
to show that

j−1∑
i=0

µiqi + qj ≤
h∑
i=0

µiqi +
∞∑

i=h+1

qi (8)

S. M. Fosson and P. Tilli • Deconvolution of Quantized-Input Linear Systems: analysis via Markov Processes of a Low-Complexity Algorithm 

60



This is obtained by easy computations:

qj ≤
h∑
i=j

µiqi +
∞∑

i=h+1

qi

=
∞∑

i=j+1

qi =
qj+1

1− q
.

(9)

Finally,

qj ≤ qj+1

1− q
⇔ q ≥ 1

2

and this proves (7). Now, we know that
h∑
i=0

µiqi ≤ x ≤
h∑
i=0

µiqi +
qh+1

1− q
(10)

and in the limit case h→∞, this becomes x =
∑∞
i=0 µiq

i.
In conclusion, [0, 1

1−q ] ⊆ X and given that the opposite
inclusion holds by definition, we have the equivalence

X ≡
[
0,

1
1− q

]
. (11)

B. Case q ∈ (0, 1
2 ).

If q < 1
2 , X is a Cantor set. It can be constructed from

the interval
[
0, 1

1−q

]
by deleting the elements that cannot be

represented by the series, that is, the subintervals
(

q
1−q , 1

)
,(

q2

1−q , q
)
∪
(

1 + q2

1−q , 1 + q
)

, etc. More precisely,

X =
[
0,

1
1− q

]
−
∞∑
m=0

2m⋃
n=1

(
pm,n +

qm+1

1− q
, pm,n + qm

)
(12)

where pm,1, . . . ,pm,2m are the binary polynomials in q of
degree at most m− 1 (p−1,1 = 0 by convention).

Notice that
∑∞
i=0 µiq

i is a bijective map from {0, 1}N to
X if q < 1

2 . The surjectivity is obvious, while as far as the
injectivity is concerned, suppose that

∑
µnqn =

∑
νnqn,

µn, νn ∈ {0, 1} but with some different coefficients; for
instance, let µn = νn for n = 0, . . . ,m − 1, µm = 0 and
νm = 1 for some m. Since q < 1

2 , qm+1

1−q < qm, hence∑
µnqn <

∑
νnqn: this proves that there cannot be two

series with the same sum, but different coefficients.

The geometrical characterization of X strongly affects
the performance of our deconvolution algorithm, that will
be shortly introduced. Before that, we need to change our
perspective on the problem, describing it in Information
theoretic, probabilistic terms.

III. INFORMATION-CODING THEORETIC APPROACH

Given the discrete nature of u, our deconvolution problem
can be interpreted as a digital transmission paradigm. By
definition (4), recovering u(t) in [0, T ] corresponds to re-
covering the binary message (u0, . . . , uK−1) on the basis
of the received real sequence (r1, . . . , rK), which is the
task performed by a decoder in a digital transmission [11].
Moreover, the sequence (x1, . . . , xK) can be thought as an

encoded version of the input, with encoding rule imposed
by the system itself and defined by (6); X is then the code’s
alphabet. Furthermore, y(t) = cx(t) can be interpreted as a
signal amplification and r(t) = y(t) + n(t) as the passage
of y(t) through an additive-noise channel.

This Information-Coding setting suggests to exploit some
decoding technique to perform deconvolution, instead of a
classical input estimation method. In [8] this approach has
been proved to be successful in the case a = 0, that is, when
the convolution reduces to an integration; in this work, we
extend those results to the general convolution framework,
using a suitable low-complexity decoding algorithm that we
will introduce in the next section.

As mentioned above, the encoding rule is determined by
the system itself. This constitutes a difference between our
problem and the classic coding paradigm, for which the
encoding is expressly conceived to improve the reliability
of the transmission. In our case, instead, we undergo the
encoding, whose influence on the quality of the transmission
actually depends on the parameters a, b and c (the theoretic
analysis in Section V will assess this issue).

A. Probabilistic Setting

In order to complete the description of our transmission
paradigm, we suppose that the input and the additive noise
n(t) are stochastically generated according to known proba-
bilistic distribution laws, in particular:

Assumption 4: The additive noise n(t) is white gaus-
sian, that is, n(kτ) are realizations of independent gaussian
random variables Nk, k = 1, . . . ,K, with null mean and
variance σ2.

Assumption 5: u0, . . . , uK−1 are realizations of indepen-
dent Bernoulli random variables U0, . . . , UK−1 with param-
eter 1

2 .
Assumption 4 is very common in digital transmissions: the
so-called AWGN (Additive White Gaussian Noise) channels
are based on this model [11]. Also the assumption on the
input source statistics is often required, but the distribution
law can vary: in this case, we have chosen the easiest one,
however more common situations (for instance, distributions
based on Markov Chains) will be studied in further works.

The randomness introduced by the noise and the input
involves all the system: also x, y and r actually are random
variables. It is then more appropriate to rewrite the whole
problem in probabilistic terms (capital letters will be used to
indicate random variables):

Uk ∼ Bernoulli
(

1
2

)
, k = 0, . . . ,K − 1;

X0 = 0;
Xk = qXk−1 + wUk−1, k = 1, . . . ,K;
Yk = cXk, k = 1, . . . ,K;

Rk = Yk +Nk, Nk = N (0, σ2), k = 1, . . . ,K.

Finally, we will denote by Ûk−1 the estimate of the bit Uk−1.
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B. Performance analysis

In order to check the performance of any deconvolution
algorithm applied to our problem, we have to quantify how
far the estimated sequence Û = (Û0, . . . , ÛK−1) is from the
correct one U = (U0, . . . , UK−1), that is, to define a suitable
distance between Û and U and calculate it. In our context,
we choose the mean square cost d̄(U, Û), defined as:

d̄(U, Û) =
1
K

K−1∑
k=0

E(Uk − Ûk)2 (13)

which is equivalent to

d̄(U, Û) =
1
K

K−1∑
k=0

P(Uk 6= Ûk).

The computation of the distance will be analytically achieved
in Section V.

IV. ONE STATE ALGORITHM

In this section, we present our decoding algorithm, that
is, the One State Algorithm introduced in [8]. It is a low-
complexity, recursive scheme derived from the well-known
BCJR technique [1]. The BCJR computes the probabilities of
all the possible transmitted codewords from the observation
of the noisy output and then decodes the received sequence
with the most probable transmitted one. This task is per-
formed through a double recursive procedure that implements
a maximum a posteriori estimation (MAP for short, see [11]),

The BCJR has been proved to be optimal. Nevertheless,
its original version is off-line and requires a finite number
of states, hence it cannot be applied to problems such as
the one we aim to solve. The One State Algorithm has been
developed for this scope: it is a simplified, single recursive
version of the BCJR that stores only one state at each step
and takes account only of the past and present information.
We refer the reader to [8] for the complete discussion on its
genesis, here we just briefly remind its pattern:

1) Initialize state estimate: x̂0 = 0;
2) For k = 1, . . . ,K, given the received symbol rk ∈ R,

estimate the current bit and the current state:

ûk−1 =
{

0 if |rk − cqx̂k−1| ≤ |rk − (cqx̂k−1 + cw)|
1 otherwise.

x̂k = qx̂k−1 + wûk−1.
(14)

Given the estimation of the state, the decoder estimates the
possible transmitted signals according to the dynamics of the
system. As the input is binary, at each step we have just two
possible signals and we decide between them evaluating the
distance between them and the acquired output sample rk.

Naturally, the more the possible signals are pairwise
distant, the more the decoding is reliable, the distance being
|cw|.

V. THEORETIC ANALYSIS

This section is devoted to the analytic description of the
One State Algorithm and evaluation of its performance,
which will be accomplished applying results of the Theory
of Markov Processes. In particular, we will apply methods
already used in [8] and also introduce new techniques to
study Markov Processes.

In order to compute d̄(U, Û), let us define the stochastic
process

Dk = X̂k −Xk = qDk−1 + w(Ûk−1 − Uk−1) (15)

where k = 0, . . . ,K and D0 = 0. If Dk−1 = d, then Dk ∈
{qd− w, qd, qd+ w}. Moreover,

Dk ∈ Dk = w

{
k−1∑
i=0

αiqi, αi ∈ {−1, 0, 1}

}
. (16)

The key point now is that if K is finite, (Dk)k=0,...,K is a
Markov Chain (with finite state space), while if we let K
tend to infinity, (Dk)k∈N is a Markov Process on (D,B(D))
where

D = w

{ ∞∑
i=0

αie
ai, αi ∈ {−1, 0, 1}

}
(17)

(the definitions of Markov Chains and Markov Processes
we are referring to are those introduced in [8]). As we are
interested in the long-time behavior of the system, in the next
we will focus on the Markov Process (Dk)k∈N. In particular,
by the study of (Dk)k∈N we can evaluate d̄(U, Û) for large
K. In fact,

1
K

K−1∑
k=0

P(Ûk 6= Uk) =

=
1
K

K−1∑
k=0

∫
ξ∈D

P(Ûk 6= Uk|Dk = ξ)P k(0, dξ)

(18)

where P k(a,A) is the k-step transition probability from a
to the set A. In the next, we will indicate

g(ξ) = P(Ûk 6= Uk|Dk = ξ)

since given at any step k, the probability of incorrect detec-
tion only depends on the value of DK . Then,

Theorem 1 (Ergodic Theorem): If (Dk)k∈N admits a
unique invariant probability measure (say a probability mea-
sure µ such that µ(A) = µP (A) for any A ∈ B(D); i.p.m.
for short), then

lim
K→∞

d̄(U, Û) =
∫
D
g(ξ)µ(dξ). (19)

This result is a consequence of the Ergodic Theorem of
Markov Processes (see, e.g., [7] and [9, Theorem 2.3.4 -
Proposition 2.4.2]), and states that it is sufficient to verify
the existence and the uniqueness of an i.p.m. for (Dk)k∈N
to assess the mean square cost for large K (g can be
analytically computed, while µ and the integral in (19) can
be numerically evaluated whenever µ exists and is unique).

Our next goal is then to prove the existence and uniqueness
of an i.p.m. for (Dk)k∈N. This requires first the computation
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of the transition probability kernel of (Dk)k∈N, which turns
out to be discrete, in the sense that Dk = ξ implies Dk+1 ∈
{qξ − w, qξ, qξ + w} for any k ∈ N.

For notational brevity, throughout this section let us sup-
pose

c = 1.

By the definition of (Dk)k∈N, by the One State procedure
and given the assumptions 1-5 we obtain the following
transition probabilities (the details of the computation are
omitted for brevity) for any k ∈ N:

P (ξ, qξ + w) = P(Ûk = 1, Uk = 0|Dk = ξ)

=
1
4

erfc
(

qξ + w/2
σ
√

2

)
P (ξ, qξ − w) = P(Ûk = 0, Uk = 1|Dk = ξ)

=
1
4

erfc
(
−qξ + w/2

σ
√

2

)
P (ξ, qξ) = 1− P (ξ, qξ + w)− P (ξ, qξ − w).

(20)

Moreover,

g(ξ) = P (ξ, qξ + w) + P (ξ, qξ − w). (21)

Now, we can proceed to the proof of the main theorems of
this work.

A. Main Results

Theorem 2 (Existence of an i.p.m.): The Markov Process
(Dk)k∈N admits at least one invariant probability measure.

Theorem 3 (Uniqueness of the i.p.m.): The conditions
q < 1

3+
√

2
eπ

and q > 1

3−
√

2
eπ

are sufficient so that (Dk)k∈N
admits a unique i.p.m..

B. Proof of Theorem 2

First, we notice that the structure of D is analogous
to the structure of X described in Section II: if q ≥ 1

3 ,
D =

[
− w

1−q ,
w

1−q

]
while if q < 1

3 , the state space D
is a Cantor space homeomorphic to {−1, 0, 1}N with the
natural product topology (the construction is the same of
X ). In both cases D is compact, which along with the weak-
Feller property guarantees the existence of an i.p.m. (see
for example [9, Theorem 7.2.3]). A Markov Process is said
to be weak-Feller if Pf ∈ Cb(D) whenever f ∈ Cb(D)
(see [9, Paragraph 7.2.1]). In our case, if f ∈ Cb(D), then
Pf(ξ) =

∑
i∈{−w,0,w} P (ξ, qξ+ i)f(qξ+ i) ∈ Cb(D) since

P (ξ, qξ+i), i ∈ {−w, 0,w}, are continuous and bounded as
functions of ξ. Hence, (Dk)k∈N is weak-Feller and admits
an i.p.m..

C. Proof of Theorem 3

Let µ and ν be two probability measures on D and
consider the Wasserstein distance between measures defined
by:

d(µ, ν) = sup
f∈1-Lip(D)

(∫
fdµ−

∫
fdν

)
. (22)

Moreover, let us name T the operator

T : µ→ Tµ = µP

on the space of the probability measures on D. Now, can
prove the following lemmas.

Lemma 1: The conditions of Theorem 3 are sufficient so
that for any f ∈ 1 -Lip(D), then Pf ∈ h-Lip(D) with h < 1.
Proof Given any f ∈ 1-Lip(D) and ξ, ζ ∈ D,

Pf(ξ)− Pf(ζ)

=
∑

i∈{−w,0,w}

f(qξ + i)P (ξ, qξ + i)− f(qζ + i)P (ζ, qζ + i)

= f(qξ) +
∑

i∈{−w,w}

[f(qξ + i)− f(qξ)]P (ξ, qξ + i)+

− f(qζ)−
∑

i∈{−w,w}

[f(qζ + i)− f(qζ)]P (ζ, qζ + i).

Adding and removing the quantity [f(qξ + w) −
f(qξ)]P (ζ, qζ+w)+[f(qξ−w)−f(qξ)]P (ζ, qζ−w), using
the Lipschtiz property of f and recalling that P (ζ, qζ+w)+
P (ζ, qζ − w) ≤ 1

2 for any ζ ∈ D, we obtain

Pf(ξ)− Pf(ζ) =
[f(qξ + w)− f(qξ)][P (ξ, qξ + w)− P (ζ, qζ + w)]

+ [f(qξ − w)− f(qξ)][P (ξ, qξ − w)− P (ζ, qζ − w)]
+ [f(qξ + w)− f(qξ)− f(qζ + w) + f(qζ)]P (ζ, qζ + w)
+ [f(qξ − w)− f(qξ)− f(qζ − w) + f(qζ)]P (ζ, qζ − w)
+ f(qξ)− f(qζ) ≤
≤ w

∣∣P (ξ, qξ + w)− P (ζ, qζ + w)
∣∣

+ w
∣∣P (ξ, qξ − w)− P (ζ, qζ − w)

∣∣+ q|ξ − ζ|

Hence,

|Pf(ξ)− Pf(ζ)| ≤ w max
z∈D

∣∣∣∣dPdz (z, qz + w)
∣∣∣∣ |ξ − ζ|+

+
(

w max
z∈D

∣∣∣∣dPdz (z, qz − w)
∣∣∣∣+ q

)
|ξ − ζ|

(23)

provided that P is differentiable by definition. The deriva-
tives are

d

dz
P (z, qz + w) = − q

2σ
√

2π
exp

(
(qz + w/2)2

2σ2

)
d

dz
P (z, qz − w) =

q
2σ
√

2π
exp

(
(qz − w/2)2

2σ2

)
The absolute values of the derivatives achieve their maximum
in the endpoints of D, respectively in z = − w

1−q = b
a and

z = w
1−q = − b

a , that is:

max
z∈D

∣∣∣∣ ddzP (z, qz + w)
∣∣∣∣ = max

z∈D

∣∣∣∣ ddzP (z, qz − w)
∣∣∣∣ =

=
q

2σ
√

2π
exp

(
(b/a)2(1− 3q)2

8σ2

)
.
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By the inequality (23), a sufficient condition to obtain the
thesis is

wq
σ
√

2π
exp

(
(b/a)2(1− 3q)2

8σ2

)
+ q < 1. (24)

Recalling that w = − b
a (1− q) and q ∈ (0, 1), the inequality

(24) is equivalent to

q
−b/a
σ
√

2π
exp

(
(b/a)2(1− 3q)2

8σ2

)
< 1. (25)

Let us consider the case q 6= 1/3. As the function te−t
2
,

t ∈ [0,+∞) has global maximum at t = 1√
2

where it
assumes the value 1√

2e
, we have

q
−b/a
σ
√

2π
e−

(b/a)2(1−3q)2

8σ2 ≤ 2q√
π|1− 3q|

1√
2e

Then, a sufficient condition to fulfill (25) is√
2
eπ

q
|1− 3q|

< 1 (26)

and finally, this corresponds to q < 1

3+
√

2
eπ

if q < 1
3 and to

q > 1

3−
√

2
eπ

if q > 1
3 .

Lemma 2: In the hypotheses of Lemma 1, T is a contrac-
tion, that is,

d(µP, νP ) ≤ h d(µ, ν), h < 1. (27)
Proof Given a function f on D,∫

f d(µP ) =
∫
ξ∈D

∫
ζ∈D

f(ξ)P (ζ, dξ)µ(dζ)

=
∫
Pf dµ

Hence

d(µP, νP ) = sup
f∈1-Lip(D)

(∫
f d(µP )−

∫
f d(νP )

)
= sup
f∈1-Lip(D)

(∫
Pf dµ−

∫
Pf dν

)
.

By Lemma 1, if f ∈ 1-Lip(D), then Pf ∈ h-Lip(D), h < 1.
Then, for any probability measures µ, ν on (D,B(D)) and
f ∈ 1-Lip(D):∫

Pf dµ−
∫
Pf dν ≤

≤ sup
g∈h-Lip(D)

(∫
gdµ−

∫
gdν

)
= h d(µ, ν)

In particular,

d(µP, νP ) =

= sup
f∈1-Lip(D)

(∫
Pf dµ−

∫
Pf dν

)
≤ h d(µ, ν)

with h < 1.
At this point, we can conclude the proof of Theorem 3.

In fact, under the required conditions, the operator T is
a contraction in the space of the probability measures on

(D,B(D)), then it admits a unique fixed point, i.e., there
is a unique probability measure µ such that Tµ = µ, or
equivalently µP = µ. In conclusion, µ is the unique i.p.m.
for (Dk)k∈N.

D. Further conditions for the uniqueness of the i.p.m.

Theorem 3 does not assure the uniqueness when q ∈[
1

3+
√

2
eπ

, 1

3−
√

2
eπ

]
. However, for these values of q the in-

equality (25) holds whenever

−b/a
σ

< 6.43 (28)

(this result has been obtained by numerical resolution of
(25)). In other terms, the condition (28) is sufficient to

achieve the uniqueness also for q ∈
[

1

3+
√

2
eπ

, 1

3−
√

2
eπ

]
.

The inequality (28) states that the diameter of D cannot be
too larger than the noise variance. This has sense, since
uniqueness is connected to the idea that the process can
spread the state space, which is more likely when the space
has small dimensions and the noise is considerable (for our
process, a very small noise concentrates all the mass about
0, the center of D).

Notice also that condition (28) is only sufficient and one
can reasonably expect that uniqueness holds for any value
of q ∈ (0, 1), with no further conditions.

Given existence and uniqueness of the i.p.m. we can apply
the Ergodic Theorem 1 to compute the mean square cost
for large values of K and then to evaluate the performance
of the One State algorithm. The integral in (19) can be
numerically computed; in particular, one obtains an i.p.m.
which is symmetric and with a maximum in the center of D.
Moreover, the value of the maximum increases as far as the
noise decreases.

In the next section, we present a few significant simula-
tions and the comparison between simulations’ and theoretic
results.

VI. A FEW SIMULATIONS

In the next, we report the outcomes of some simulations
of our transmission system. Recalling the pattern of the One
State Algorithm, notice that |cw| = |c ba (1 − q)|, which
represents the distance between the two possible transmitted
signals at each step, plays a fundemental role. A larger value
of |cw| is then desirable, since, as already mentioned, a larger
distance improves the reliability of our estimation technique.
On the other hand, c2w2 can be interpreted as the energy
per channel use of our transmission system, then for the
applications its value cannot be increased too much.

In the next, we will represent the mean square cost
d̄(U, Û) in function of the so-called the Signal-To-Noise
Ratio (SNR for short) of our transmission, that is, c2w2/σ2.
This quantity represents the proportion between signal and
noise energies and is usually assumed as reference parameter
to study the quality of a transmission. A more detailed dis-
cussion about this point can be retrieved in [8], while in [11]
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Fig. 1. Simulation with b = c = 1, a = −1,−0.1,−10.
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Fig. 2. Analytic vs Simulated Mean Square Cost (system with b = c = 1,
a = −1): the results are consistent.

the reader can find the basic concepts of this information-
theoretic issue.

Given that cw is the leading parameter, in the simulations
we fix and b = c = 1, while a can vary. In Figure 1 the
cases a = −1, a = −0.1 and a = −10 are represented:
the graphs show the mean square cost d̄(U, Û) in function
of SNR = c2w2/σ2 expressed in dB. We can notice that
the performance improves (that is, the mean square cost
decreases) as a decreases.

In Figure 2 we show a comparison between the mean
square cost obtained by analytic computation and by the
simulations in the case b = c = 1 and a = −1: the graphs are
coincident. This is only an example, but a perfect consistency
between simulated and analytic results has been observed to
hold in every case.

VII. CONCLUSIONS

In this paper, the One State Algorithm has been introduced
to solve the deconvolution problem for linear systems with
quantized input. This algorithm, derived from the optimal
BCJR decoding method, is very low-complexity. Moreover,
its performance can be analytically evaluated in terms of a

mean square cost through the theory of Markov Processes:
indeed, the distance between the estimated and the correct
state can be interpreted as a Markov Process, because of the
recursive pattern of the One State Algorithm. In particular,
for long-time transmissions an Ergodic Theorem can be
applied to assess the mean square cost.

The theoretic analysis of the One State technique requires
the proof of the existence and uniqueness of an invariant
probability measure for a Markov Process. It is well known
that uniqueness is difficult to prove when the process has not
a positive probability of spreading the state space in one step;
in this paper, we have undertaken the problem interpreting
the i.p.m. as the fixed point of a contraction operator on the
space of the probability measures. This approach allows to
state sufficient conditions to have the uniqueness and can
be applied even when the state space is not standard, for
instance, when it is a Cantor set. This would be more difficult
to achieve through the classic theorems of [7], [10], [9],
which require a precise topological knowledge of the state
space.

In the last part of this work, a few simulations have
been presented and d̄(U, Û) has been computed for some
instances of the problem. As far as the performance is
concerned, notice that in [8] a more reliable method was
individuated, the so-called Two States algorithm; neverthe-
less, this algorithm is more reliable only when the elements
of X are isolated and equidistanced.

We finally remark that the One State Algorithm can be
exploited in any stochastic framework, that is, with other
input and noise distributions. Furthermore, it can be imple-
mented also in multi-dimensional linear systems, which are
of greater interest for the applications. In the latter case, the
theoretic analysis via Markov Process can be analogously
undertaken, but the dynamics of the process and the structure
of the state space become more difficult to describe as far
as the dimensions increase. This instance will be dealt with
in some future work, in which also applications to the Fault
Tolerant Control will be discussed.
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