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Abstract— The impact of sparsity-inducing techniques in
signal analysis has been recognized for over ten years now
and has been the key to a growing literature on the subject–
commonly referred to as compressive sensing. The purpose of
the present work is to explore such sparsity-inducing techniques
in the context of system identification. More specifically we
consider the problem of separating sinusoids in colored noise
while at the same time identifying the dynamics that generate
the wide-bandwidth noise-component. Our formalism relies
on modeling the data as a superposition of a few unknown
sinusoidal signals together with the output of an auto-regressive
filter which is driven by white noise. Naturally, since neither
the underlying dynamics nor any possible sinusoids present are
known, the problem is ill-posed. We seek a sparse selection of
sinusoids which together with the auto-regressive component
can account for the data-set and, to this end, we propose
a suitable modification of sparsity-inducing functionals (a
la LASSO/Basis pursuit/etc.) which can generate admissible
solutions-their sparsity being determined by tuning parameters.

I. I NTRODUCTION

The significance of sparsity, besides its mathematical con-
venience and elegance, stems from Occam’s Razor and can
often be justified on physical grounds. Indeed, the notion of
sparsity has in recent years created an alternative paradigm to
the more traditional minimal-dimension paradigm which has
dominated system theory for the past fifty years. The search
for the sparsest solution to an under-determined set of equal-
ities/inequalities is in general daunting, and the emergence
of this new paradigm can be traced to the relatively recent
discovery that sparse solutions can be effectively computed
via suitableℓ1-optimization problems, e.g., see [3], [5], [6]
and the references therein. Applications abound, from image
analysis to coding and signal decomposition. Our interest in
the present work is a particular system identification problem
which can be dealt with using similar tools.

The problem of separating signals from their linear mix-
tures is ubiquitous. It arises in radar, speech, imaging, and a
host of other applications. In fact, some of the early work in
signal analysis going back to the middle part of the twentieth
century focused exclusively on separating sinusoids in white
noise. This is dealt with by a number of classical techniques
which have been continuously evolving (MUSIC, ESPRIT,
etc., [18], [12], [13], [14]) as well as by recent ones using
the tools of compressive sensing [8], [9], [10], [11], [7].
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However, a more typical situation is when the noise is not
white and the process is shaped by unknown dynamics. In
such cases the performance of traditional techniques is often
severely degraded. Thus, our interest is in formulating this
particular problem in the context of system identification
and utilize sparsity-inducing functionals to identify both a
sparse selection of sinusoids from a known “dictionary”
together with dynamics that account for time-correlations
in the residual signal. Earlier work in system identification
using compressive sensing techniques [4], [1], [17] focuses
mostly on identifying sparse parameter vectors.

II. SYSTEM DYNAMICS AND LINE SPECTRA

Consider a time series{yk : k ∈ Z} which consists of a
small number of pure sinusoids with additive colored noise.
We model the colored noise as the output of an autoregressive
(AR) filter with white input. Pure sinusoids can be equally
well modeled as added to the input or the output of the
filter—the only difference being a relative scaling of their
amplitude/phase. The former has the advantage of leading
to a convex formulation—thus, we consider the setting in
Figure 1. Here,xk is the periodic component and consists of
sinusoids of unknown frequency,wk represents white noise,
and the two together form the input to the filter.

Fig. 1. Model for sinusoids in colored noise.

We seek anrth-order AR-model based on a finite obser-
vation record of{yk, k ∈ Z}. The periodic component is
modeled as a sparse linear mixture of columns taken from
a suitable “dictionary” matrixB. In our case this matrix is
n× 2N and of the following form:

B := [Bsine, Bcosine],

Bsine(ℓ,m) = sin(πℓm/N), Bcosine(ℓ,m) = cos(πℓm/N),
for ℓ = 0, 1, . . . , n − 1 and m = 1, 2, . . . , N . Thus, the
periodic component is taken in the formBv. The entries of
v are labeled according to whether they correspond to sines
or cosines:

v := [vsin,1, ..., vsin,N , vcos,1, ..., vcos,N ]T .

Denote by
a := [a1, a2, ..., ar]

T
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the parameters of the AR-filter. Our modeling equation
becomes

ym =

r
∑

k=1

akym−k + xm + wm, m ∈ Z, (1a)

or, over the available data-window,

y = Ha+Bv +w (1b)

wherew is the noise-vector,

y := [y1, y2, ..., yn]
T , and

H :=











y0 y−1 ... y−r+1

y1 y0 ... y−r+2

...
...

yn−1 yn−2 · · · yn−r











.

For a given boundδ > 0 on the energy of the noise, we
are interested in determining

(a,v) = argmin {‖v‖0 | ‖y −Ha−Bv‖2 ≤ δ} . (2)

As usual, ‖ · ‖0 denotes the number of nonzero entries
whereas‖ · ‖p denotes thep-th norm of a vector (p ∈
{1, 2, ∞}). Evidently, (2) is computationally intractable for
large-size records. Thus, following the example of compres-
sive sensing, we consider minimization of‖v‖1 instead. The
ℓ1-norm is in fact a convex relaxation of‖ · ‖0 and several
powerful theorems provide conditions for the solution of the
correspondingℓ1-minimization to be the sparsest possible.
In the sequel we follow precisely such a program. Thus, we
consider the following relaxation:

(a,v) = argmin {‖v‖1 | ‖y −Ha−Bv‖2 ≤ δ} . (3)

It is standard that the minimizer in (3) is also

(a,v) = argmin
{

‖v‖1 + σ‖y −Ha−Bv‖22
}

(4)

for a suitable value forσ ≥ 0 which depends onδ. Typically,
neitherδ nor σ are known and can be thought of as tuning
parameters that influence the sparsity of the solution.

It is obvious that asσ becomes large enough, the optimal
pair (a,v) tends to the “least-squares” solution for whichv
is generally not sparse. At the other end, whenσ = 0+, we
obtain the trivial solution where the entries ofv are all zero.
It turns out that for intermediate values there is aphase-like
transition in the optimal value for‖v‖1 and‖v‖0 when these
change from being zero. This is shown in Figures 2-3. While
prior information on the level of noise may be helpful in
deciding the sparsity ofv, robust plateaus are typical before
transition into a higher value for‖v‖0 and can be used for
guidance in choosing the proper weight. The exact value of
σcritical where the transition from‖v‖0 = 0 to ‖v‖0 = 1
can be computed from the data as follows. Define

ΠH := H(HTH)−1HT ,

Π⊥
H := I −ΠH ,

BH⊥ := Π⊥
HB, and

yH⊥ := Π⊥
Hy.
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Fig. 2. ‖v‖1 vs. σ
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Fig. 3. ‖v‖0 vs. σ

Proposition 1: Let (a,v) be the minimizer of (4) and

σcritical :=
1

2
‖BT

H⊥yH⊥‖−1
∞ .

If σ ≤ σcritical, then‖v‖0 = 0 anda = (HTH)−1HTy. If
σ > σcritical, then‖v‖0 6= 0.

Proof: Problem (4) can be recast as

(a,v) = argmin

{

h‖v‖1 +
1

2
‖y −Ha−Bv‖22

}

(5)

for h = 1/2σ. The quadratic term can be written as

‖y−Ha−Bv‖22 = ‖ΠH(y−Ha−Bv)‖22+‖Π⊥
H(y−Bv)‖22.

Sincea is unconstrained, the optimal value ofa satisfies

ΠH(y −Ha−Bv) = 0.

Hencea = (HTH)−1HT (y − Bv). Substituting the value
of a above we have that

v = argmin

{

h‖v‖1 +
1

2
‖yH⊥ −BH⊥v‖22

}

. (6)

Following [10],

v = argmin{‖BH⊥v‖22 | |BH⊥(yH⊥ −BH⊥v)|i ≤ h,

for 0 ≤ i ≤ 2N}. (7)

Thus, if h ≥ ‖BH⊥yH⊥‖∞, thenv = 0. 2

In the next section we attempt to quantify the reliability
and accuracy of estimates and motivate weighted optimiza-
tion by appealing to certain facts related to maximum like-
lihood estimation.
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III. W EIGHTED OPTIMIZATION AND MAXIMUM

LIKELIHOOD

Suppose that the frequencies of all sinusoidal components
of {yk, k ∈ Z} are known exactly and thatBS is a
(full column-rank) matrix formed out of the columns of
B corresponding to these known frequencies. It turns out,
see [15], that the maximum likelihood estimation of the
parametersa, v in the model coincide with the solution of

(a
ML

,v
ML

) = argmin ‖y−Ha
ML

−BSvML
‖22. (8)

This problem can be replicated in our earlier formalism via
weighted optimization. More specifically, consider

(a,v) = argmin

{

‖Wv‖1 +
1

2
‖y −Ha−Bv‖22

}

(9)

with W = diag(w1, w2, . . . , w2N ). Clearly, if wi = 0 for
any index corresponding to the columns ofBS and large
otherwise, the solution of these two problems coincide.

Proposition 2: Let y, H , B be as above,S be the index
set of the non-zero entries ofv

ML
, and let Sc be its

complement. Define matricesBS and BSc containing the
corresponding columns ofB and define

Π[H BS ] := [H BS ]([H BS ]
T [H BS ])

−1[H BS ]
T

andΠ⊥
[H BS ] := I −Π[H BS ]. If

wi = 0 for i ∈ S
wi ≥ |(BSc)TΠ⊥

[H BS ]y|i for i ∈ Sc,

then the solutions to (9) and (8) coincide.

Proof: The quadratic term in (9) is

‖y −Ha−Bv‖22 = ‖Π[HBS ](y −Ha−BSvS

−BScvSc)‖22 + ‖Π⊥
[HBS ](y −BScvcSc)‖22.

Since a,vS are unconstrained, the first term on the right
hand side must be zero for the minimizer. Hence,

Π[HBS ](y −Ha−BSvS −BScvSc) = 0 (10)

and

vS = argmin

{

‖WScvSc‖1 +
1

2
‖Π⊥

[H BS ](y −BScvSc‖22)
}

.

As in the proof in Proposition 1, if

wi ≥ |(BSc)TΠ⊥
[HBS ]y|i for i ∈ Sc,

thenvSc = 0. Finally, (10) is equivalent to

Π[HBS ](y −Ha−BSvS) = 0.

which implies that(a,vS) = (a
ML

,v
ML

) in (8). 2

Obviously, in practice,S is unknown. Thus, below, we
suggest how this information may be sought in the data.
Denote

Q = diag {q1, q2, . . . , qn} (11)

whereq2i , i = 1, 2, . . . , n are the diagonal entries of the prod-
uct BT

H⊥BH⊥ andM = maxi6=j |(Q−1BT
H⊥BH⊥Q−1)i,j |.

Thus,M is the maximal coherence between the entries of
BH⊥ .

As will be elaborated in [16], the valuesqi, i =
1, 2, . . . , 2N relate to the spectrum of the input signal
at different frequencies and, in fact, the entries ofq :=
[ 1√

q2
j
+q2

j+N

, j = 1, 2, . . . , N ] can be taken as a “pseudo

spectrum” (same shape but not necessarily the same integral).
Proposition 3: Let y, H , Q, B be as above, assume that

B is square, and assume that there exists a pair(v0, a0)
satisfying

‖y −Ha0 −Bv0‖2 ≤ δ0

for someδ0 > 0. Consider

ṽ = argmin{‖Qv‖1 | ‖yH⊥ −BH⊥v‖2 ≤ δ} (12)

for δ ≥ δ0. If the sparsityS := ‖v‖0 < M+1
4M , then

‖Q(ṽ − v0)‖22 ≤ (δ0 + δ)2

1 +M − 4MS
.

For a proof see [16]. The above suggests that ifW is
chosen proportional toQ, the error betweenv in (9) andv0

is small. In some situations, the exact recovery of the set
S can also be guaranteed [16]. We may also consider how
closea in (9) is toa

ML
. Sincea = (HTH)−1HT (y−Bv),

a = (HTH)−1HT (y −BSvML
+BSvML

−Bv)

= a
ML

+ (HTH)−1HT (BSvML
−Bv).

Denote bybi the ith column ofB. It can be seen from the
above thata− a

ML
is insensitive to any difference between

BSvML
− Bv corresponding to indices/frequencies where

(HTH)−1HTbi is small. Analyzing this further suggests
that this quantity is small at the stop-band of the AR-filter.
Hence, error in identifying sinusoidal components within
the stop band of the filter will not affect significantly the
estimation of the filter dynamics.

The above propositions suggests that an effectiveoff-the-
shelf choice forW is Q. In the next section, we follow up
with an alternative approach which updatesW iteratively
based on changes in the selection vectorv.

IV. I TERATIVE RE-WEIGHTING

The idea of the following steps originate in [2]. In light of
the earlier discussion we begin by lettingW = Q. We then
solve (9) and updateW in a way that promotes selection
of sinusoids at frequencies where thesignal-to-noise ratio
(SNR) is large. The steps are as follows:

i) ChoseW [1] = Q with Q as in (11).

ii) UpdateW [k] = diag{w[k]
1 , . . . , w

[k]
2N} using

w
[k+1]
i =

K

|v[k]sin,i|+ |v[k]cos,i|+ τ
,

w
[k+1]
i+N = w

[k+1]
i , i = 1, ..., N,

for a choice ofτ,K > 0. (Here,τ is a “small” constant
to prevent singularity of the above expression when
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the entries ofv are zero whereasK may be adjusted
according to the SNR.)

iiii) Terminate when‖v[k+1] − v[k]‖1 is sufficiently small.
For a terminal value for the vectorv,

|vsin,i|+ |vcos,i|
|vsin,i|+ |vcos,i|+ τ

=

{

1, |vsin,i|+ |vcos,i| ≫ τ ;
0, |vsin,i|+ |vcos,i| ≈ 0.

Hence, ‖Wv‖1 ≈ (K × #signals). On the other hand,
|vsin,i| + |vcos,i| relates to the “local” SNR. Thus, it is
reasonable to assignK a value according to the smallest
anticipated/detected amplitude of the spectral lines as those
are reflected in|vsin,i| + |vcos,i|. A similar rationale, albeit
in a different setting, was suggested in [15].

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

frequency   0:π

Fig. 4. True line spectra (normalized)

V. ILLUSTRATIVE EXAMPLES

We highlight the performance of the scheme in the previ-
ous section with an example. ConsiderB = [Bsine, Bcosine]
as before and of size128× 256. We generate data using an
AR-filter with transfer function

f(z) =
1

1− 1.8z−1 + 1.3z−2 − 0.4z−3

and unit variance white noise at the input along with three
sinusoidal components at the following set of frequencies

{30π/128, 70π/128, 71π/128}.
The corresponding spectral lines and amplitudes are shown in
Figure 4. The periodogram is shown in Figure 5 underscoring
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Fig. 5. Periodogram of y

the relatively poor SNR in the generated data. The resolution
of the periodogram is insufficient to separate the sinusoids as
these are closer than the Fourier limit. Further the presence of
colored noise degrades the effectiveness of other traditional
techniques [16]. It is interesting to compare with the “pseudo

spectrum”q. The power at the location of the sinusoidal
components stands out.
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Fig. 6. ”Pseudo spectrum”q

We used a third order filter to model the noise-color and
the methodology of Section IV to obtain the spectral lines
shown in Figure 7. The estimated AR-filter parameters give
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Fig. 7. Estimated line spectra (normalized)

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

 

 
unit circle
true poles
estimated poles

Fig. 8. Poles of true and estimated filters.

the transfer function

f̂(z) =
1

1− 1.8436z−1 + 1.4263z−2 − 0.4465z−3

as an approximate system model. Comparison of the poles
of the true and estimated filters is shown in Figure 8.
Both, the estimated system dynamics and the location of the
spectral lines are in excellent agreement with the simulation
parameters.

VI. CONCLUDING REMARKS

We have cast the problem of separating sinusoids sig-
nals in colored noise into a compressive sensing setting.
Performance guarantees have been obtained under suitable
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assumptions on the “dictionary” matrix of possible sinusoidal
components and insight into possible choices for weight-
ing/tuning parameters is provided. An iterative re-weighting
method is discussed. We have found this to be quite effective
in practice. Further analysis, both theoretical as well as
experimental is needed as the tools of compressive sensing
seems especially suited for this type of application.
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