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Abstract— The theory of differential inclusions provides cer-
tain sufficient conditons for the uniqueness of Filippov solutions
such as one-sided Lipschitzian property or maximal monotone
condition. When applied to piecewise affine dynamical systems,
these conditions impose rather strong conditions. In this paper,
we provide less restrictive conditions for uniqueness of Filippov
solutions for the bimodal piecewise affine systems.

I. INTRODUCTION

Piecewise affine dynamical models arise in various con-
texts of system and control theory. When these models
are given by differential equations with discontinuous right
hand sides, existence and uniqueness of solutions (i.e., well-
posedness) become a nontrivial issue. Such models are
typically studied in the framework of differential inclusions
with the so-called Filippov solution concept. Existence of
Filippov solutions require very mild conditions in general.
Applied to piecewise affine systems, one can readily guar-
antee existence of solutions. However, conditions of unique-
ness (e.g., one-sided Lipschitz property or monotonicity-type
conditions) for general differential inclusions impose quite
strong requirements for piecewise affine systems. In this
paper, we introduce less restrictive conditions that guarantee
uniqueness of solutions.

Importance of well-posedness studies are two folded. On
the one hand, conditions for well-posedness cerve as means
of model verification. After all, physical phenomena that the
model should capture has unique solutions. Naturally, any
model should inherit this property. On the other hand, due
to well-posedness conditions piecewise affine systems enjoy
certain strong structural properties that can be exploited in
the context of analysis and design.

II. PIECEWISE AFFINE BIMODAL DYNAMICAL SYSTEMS

Throughout the paper, the index i will always belong to
the set {1, 2}.

For given matrices (Ai, ei) ∈ Rn×n × Rn, c ∈ Rn and
f ∈ R with cT 6= 0, we define set-valued functions F , G
: Rn ⇒ Rn as

F (x) =

 {A1x+ e1} if y < 0
{A1x+ e1, A2x+ e2} if y = 0
{A2x+ e2} if y > 0,

G(x) =

 {A1x+ e1} if y < 0
conv

(
{A1x+ e1, A2x+ e2}

)
if y = 0

{A2x+ e2} if y > 0
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where y = cTx+ f and conv(S) denotes the convex hull of
the set S.

Consider the bimodal piecewise affine system given by the
differential inclusion

ẋ(t) ∈ F (x(t)) (1)

where x ∈ Rn is the state. In case, the implication

cTx+ f = 0⇒ A1x+ e1 = A2x+ e2 (2)

holds, the set-valued maps F and G boil down to single-
valued Lipschitz continuous function. In this paper, we study
the general case where (2) may not hold. Various solution
concepts exist for differential inclusions (see e.g. [1]).

In this paper, we focus on Carathéodory and Filippov
solutions to the system (1).

Definition II.1 An absolutely continuous function x : R→
Rn is said to be a solution of the bimodal system (1) for the
initial state x0 in the sense of
• Carathéodory if x(0) = x0 and (1) is satisfied for

almost all t ∈ R.
• forward Carathéodory if it is a solution in the sense of

Carathéodory and for each t∗ there exists εt∗ > 0 such
that

ẋ(t) = Aix(t) + ei, (−1)i−1[cTx(t) + f ] 6 0 (3)

for all t ∈ (t∗, t∗ + εt∗).
• backward Carathéodory if it is a solution in the sense

of Carathéodory and for each t∗ there exists εt∗ > 0
such that

ẋ(t) = Aix(t) + ei, (−1)i−1[cTx(t) + f ] 6 0 (4)

for all t ∈ (t∗ − εt∗ , t∗).
• Filippov if x(0) = x0 and the differential inclusion

ẋ(t) ∈ G(x(t)) (5)

is satisfied for almost all t ∈ R.

Clearly every Carathéodory solution is also Filippov solu-
tion. As it is well-known the converse is not true in general.

Existence of Filippov solutions is guaranteed by the fol-
lowing proposition.

Proposition II.2 ([4], Theorem 1, p.77) For each initial
state x0 ∈ Rn there exists a solution of the system (1) in
the sense of Filippov.

The main goal of the paper is to investigate uniqueness
of Filippov solutions to the differential inclusion (1) and its
consequences.
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Definition II.3 We say that a solution x for the initial state
x0 is
1) left-unique if x′ is a solution for the same initial state
then x(t) = x′(t) for all t 6 0.
2) right-unique if x′ is a solution for the same initial state
then x(t) = x′(t) for all t > 0.
3) unique if x is left-unique and right-unique.

The two most common conditions that are employed in
the theory of differential inclusions in order to guarantee
the uniqueness Filippov solutions are the so-called one-sided
Lipschitz and maximal monotonicity property of the set-
valued mapping G. For the sake of completeness, we recall
the definitions of these two notions.

Definition II.4 A set-valued mapping H : Rn ⇒ Rn is said
to be
• one-sided Lipschitz if there exists L such that for all
x1, x2 ∈ Rn the following inequality holds

(y1 − y2)T (x1 − x2) 6 L||x1 − x2||2 (6)

for all yi ∈ H(xi).
• monotone if

〈x1 − x2, y1 − y2〉 > 0

for all xi ∈ Rn, yi ∈ H(xi).
• maximal monotone if it is monotone and there is no

monotone map H ′ such that graph(H) ⊂ graph(H ′).

The following theorem provides a complete characteriza-
tion of the one-sided Lipschitz and maximal monotonicity
properties for the set-valued mapping G.

Theorem II.5 The following statements are equivalent.
1) The set-valued mapping G is one-sided Lipschitz.
2) There exist a vector h and a number µ > 0 such that

A1 −A2 = hcT , e1 − e2 = hf + µc. (7)

3) There exists λ such that −G+ λI is monotone.
4) There exists λ such that −G+λI is maximal monotone.

III. MAIN RESULTS

This theorem shows that the one-sided Lipschitzian and
maximal monotonicity properties are closely related in the
context of bimodal systems. It also shows that these two
properties are quite restrictive. The following theorem con-
stitutes the main results of this paper and provides less
restrictive sufficient conditions for uniqueness of solutions
as well as necessary conditions.

To formulate the theorem, we introduce some nomencla-
ture. For a vector v, we write v � 0 if v = 0 or its first
non-zero entry is positive. We also write v � 0 meaning that
either v � 0 and v 6= 0. We also write v ≺ 0 if −v � 0 and
v � 0 if −v � 0.

Theorem III.1 Consider the bimodal system (1). Suppose
that the pairs (cT , Ai) are observable. Consider the follow-
ing statements:

1) All Filippov solutions are right-unique.
2) Any Filippov solution is both forward and backward

Carathéodory.
3) There exist 0 6 k 6 n−1 and a (k+1)×(k+1) lower

triangular matrix M with positive diagonal elements
such that

cT

cTA1

...
cTAk1

=M


cT

cTA2

...
cTAk2

 and


f

cT e1

...
cTAk−1

1 e1

�M


f
cT e2

...
cTAk−1

2 e2

 .
4) There exists an n×n lower triangular matrix M with

positive diagonal elements such that
cT

cTA1

...
cTAn−1

1

=M


cT

cTA2

...
cTAn−1

2

 and


f

cT e1

...
cTAn−2

1 e1

=M


f

cT e2

...
cTAn−2

2 e2

 .
5) There exists an (n + 1) × (n + 1) lower triangular

matrix M with positive diagonal elements such that
cT

cTA1

...
cTAn1

=M


cT

cTA2

...
cTAn2

 and


f

cT e1

...
cTAn−1

1 e1

=M


f

cT e2

...
cTAn−1

2 e2

 .
6) There exists a 2 × 2 lower triangular matrix M with

positive diagonal elements such that[
cT

cTA1

]
= M

[
cT

cTA2

]
and

[
f

cT e1

]
�M

[
f

cT e2

]
.

The following implications hold:
i. 1 ⇒ 3 or 4

ii. 5 ⇒ 2
iii. 5 ⇒ 1
iv. 6 ⇒ 1

IV. PROOF OF THEOREM II.5
In this section, we prove Theorem II.5.

A. 1⇒ 2
Suppose that G satisfies the one-sided Lipschitz condition.

Let

S− = {x | cTx+ f 6 0} and S+ = {x | cTx+ f > 0}.

Take x1 ∈ S−, x2 ∈ S+ and take x̄ such that cT x̄+ f = 0.
For α ∈ (0, 1] define

x′1 = αx1 + (1− α)x̄, x′2 = αx2 + (1− α)x̄.

It is easy to check that x′1 ∈ S−, x′2 ∈ S+. Since G satisfies
the one-sided Lipschitz condition, one has

[(A1x
′
1 + e1)− (A2x

′
2 + e2)]T (x′1 − x′2) 6 L||x′1 − x′2||2

or equivalently

(1− α)
α

[(A1 −A2)x̄+ (e1 − e2)]T (x1 − x2)

+[(A1x1 +e1)−(A2x2 +e2)]T (x1−x2) 6 L||x1−x2||2.
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By taking sufficient small α, we can conclude that

[(A1 −A2)x̄+ (e1 − e2)]T (x1 − x2) 6 0

for all x1 ∈ S−, x2 ∈ S+. It implies that

(A1 −A2)x̄+ (e1 − e2) ∈ (S− − S+)o (8)

for any x̄ satisfying cT x̄+f = 0 where the notation o denotes
the polar cone. Then, one gets

(A1 −A2)(ker cT ) + (A1 −A2)x̄+ (e1 − e2)
⊆ (S− − S+)o = {αc | α > 0}

for fixed x̄ satisfying cT x̄+ f = 0. Since the left hand side
is an affine set and the right hand side is a cone, we can
conclude that (A1−A2)(ker cT ) = {0}. So A1−A2 = hcT

for some h. Then it follows from (8) that

e1 − e2 − hf ∈ (S− − S+)o.

Note that
S− − S+ = {x | cTx 6 0}.

Hence,
(S− − S+)o = {αc | α > 0}.

This means that e1 − e2 = hf + αc for some α > 0.

B. 2⇒ 3
Let λ = 1

2 max{λmax(A1 +AT1 ), λmax(A2 +AT2 )} where
λmax(A) denotes the largest eigenvalue of A. It is easy to
check that Ai,λ := Ai − λI 6 0. Define Gλ := −G + λI .
Note that

Gλ(x) =


{G1

λ(x)} if cTx+ f < 0
conv{G1

λ(x), G2
λ(x)} if cTx+ f = 0

{G2
λ(x)} if cTx+ f > 0

where Giλ(x) := −Ai,λx−ei. To prove Gλ being monotone,
consider the set-valued mapping

G̃λ(x) =


{G1

λ(x) +
µc

2
} if y < 0

conv{G1
λ(x) +

µc

2
, G2

λ(x)− µc

2
} if y = 0

{G2
λ(x)− µc

2
} if y > 0

where y = cTx + f . Due to (7), G̃λ is singleton and
continuous. The generalized Jacobian of G̃λ at x is

∂(G̃λ)(x) =


−A1,λ if cTx+ f < 0
conv{−A1,λ,−A2,λ} if cTx+ f = 0
−A2,λ if cTx+ f > 0.

Since Ai,λ 6 0, it is easy to see that each element of
∂(G̃λ)(x) is positive semidefinite. By [6], Proposition 2.1,
G̃λ is monotone. Now for every xi ∈ Rn, yi ∈ Gλ(xi), we
can see that yi = ỹi − (2αi − 1)

µc

2
for some ỹi ∈ G̃λ(xi)

and αi ∈ [0, 1] with αi(cTxi + f) = 0. Thus we have

〈x1−x2, y1−y2〉 = 〈x1−x2, ỹ1−ỹ2〉+(α2−α1)µ〈x1−x2, c〉.
Observe that (α2 − α1)µ〈x1 − x2, c〉 > 0 for all x1, x2.
Thus, monotonicity of Gλ follows from monotonicity of G̃λ.

C. 3⇒ 4

To prove that Gλ is maximal monotone, we invoke the
following lemma which is a result of [5, Thm. 3.4] and [3,
Exercise 1.3].

Lemma IV.1 Let F : Rn ⇒ Rn be a set-valued map with
convex compact values and dom(F ) = Rn. Suppose that F
satisfies linear growth condition;that is, there exist positive
constants γ and c such that y ∈ F (x) =⇒ ||y|| 6 γ||x||+ c.
Then F is maximal monotone if and only if it is monotone
and upper semicontinuous.

In view of this lemma, it suffices to prove that Gλ is upper
semicontinuous, i.e., for each x and for every open set
N containing G(x) there exists a neighborhood M of x
such that G(M) ⊆ N . Let x0 ∈ Rn and N be an open
set containing Gλ(x0). Existence a neighborhood M of x0

such that Gλ(M) ⊆ N is shown as follows: If x0 satisfies
(−1)i+1(cTx0+f) < 0 then Gλ(x0) = {Giλ(x0)}. Existence
of M follows from the continuity of the function

{x ∈ Rn | (−1)i+1(cTx+ f) < 0} → Rn, x 7→ Giλ(x).

If x0 satisfies cTx0 +f = 0 then there exists a neighborhood
Ni of Giλ(x0) such that conv({N1, N2}) ⊆ N. Due to the
continuity of the function Giλ(x), there exists a neighborhood
Mi of x0 such that Giλ(Mi) ⊆ Ni. Then M := M1 ∩M2 is
a neighborhood of x0 satisfying

Gλ(M) ⊆ conv(G1
λ(M1), G2

λ(M2)) ⊆ conv({N1, N2}) ⊆ N.

D. 4⇒ 1

For any x1, x2 ∈ Rn, yi ∈ G(xi), there exists ȳi ∈ Gλ(xi)
such that yi = −ȳi + λxi. It follows that

〈x1 − x2, y1 − y2〉 = −〈x1 − x2, ȳ1 − ȳ2〉
+ 〈x1 − x2, λ(x1 − x2)〉 6 λ||x1 − x2||2

because of the maximal monotonicity of Gλ. Thus G is one-
sided Lipschitz. �

V. PROOF OF THEOREM III.1

This section is devoted to the proof of Theorem III.1. First,
we introduce some simplifying notations.

Consider the affine dynamical system Σ = Σ(A, e, cT , f)

ẋ(t) = Ax(t) + e (9a)

y(t) = cTx(t) + f (9b)

where x ∈ Rn is the state and y ∈ R is the output.
Let x(t, ξ) and y(t, ξ) denote, respectively, the state and

the output of the system for the initial state ξ. Define the
sets

W−Σ = {ξ | ∃ε > 0 such that y(t, ξ) < 0 ∀t ∈ (0, ε)},
W0

Σ = {ξ | ∃ε > 0 such that y(t, ξ) = 0 ∀t ∈ (0, ε)},
W+

Σ = {ξ | ∃ε > 0 such that y(t, ξ) > 0 ∀t ∈ (0, ε)}.
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In order to characterize these sets, we need to introduce some
notations.

For k ∈ N,

T kΣ =


cT

cTA
...

cTAk

 , ekΣ =


f
cT e

...
cTAk−1e

 .
Note that for each initial state ξ the output y(t, ξ) is an

analytic function. As such, it is completely determined by
the values of its higher order derivatives at t = 0. This
observation together with Cayley-Hamilton theorem leads to
the following characterization of the W-sets.

Proposition V.1 The following statements hold.
1) W0

Σ = {ξ | TnΣξ + enΣ = 0}.
2) W−Σ = {ξ | TnΣξ + enΣ ≺ 0}.
3) W+

Σ = {ξ | TnΣξ + enΣ � 0}.
4) W−Σ ∪W0

Σ ∪W
+
Σ = Rn.

Now, we turn our attention to the bimodal system (1) and
define Σi = Σi(Ai, ei, cT , f). We also define

T ki := T kΣi
eki := ekΣi

W0
1 :=W0

Σ1
W0

2 :=W0
Σ2

W−1 :=W−Σ1
W+

2 :=W+
Σ2

W1 :=W−Σ1
∪W0

Σ1
W2 :=W+

Σ2
∪W0

Σ2
.

A. 1⇒ 3 or 4
To prove this statement, we first present some conse-

quences of right-uniqueness of solutions in terms of the
above defined W-sets.

Theorem V.2 If all Filippov solutions of the differential
inclusion (1) is right-unique then
1) W−1 ∩W2 = ∅.
2) W1 ∩W+

2 = ∅.
3) for any ξ ∈ W0

1 ∩ W0
2 , if xi is a solution of the system

ẋi = Aixi + ei, xi(0) = ξ then x1(t) = x2(t) for all t > 0.

Proof. For the first statement, arguing by contradiction,
assume that W−1 ∩ W2 6= ∅. Take ξ ∈ W−1 ∩ W2 and
let xi be the solution of the system Σi with xi(0) = ξ.
Due to ξ ∈ W−1 there exists ε1 > 0 such that y1(t, ξ) =
cTx1(t) + f < 0 for almost all t ∈ (0, ε1). This shows that
x1 is a Filippov solution of (1) on (0, ε1) with the initial state
ξ. Since ξ ∈ W2, there exists ε2 > 0 such that y2(t, ξ) =
cTx2(t)+f > 0 for almost all t ∈ (0, ε2). It shows that x2(t)
is a Filippov solution of (1) on (0, ε2) with the initial state
ξ. Let ε = min{ε1, ε2}. Because of the right-uniqueness of
Filippov solution of system (1), one has x1(t) = x2(t) for
all t ∈ (0, ε). It implies 0 6 y2(t, ξ) = y1(t, ξ) < 0 for
almost all t ∈ (0, ε), which is a contradiction.

The second statement can be proven similarly. For the
last statement, note that the solution xi of equation ẋ(t) =
Aix(t) + ei, x(0) = ξ satisfies y = cTxi(t) + f = 0 for all
t > 0. Hence, both x1 and x2 are Filippov solutions for the

initial state ξ of (1). Right-uniqueness implies x1(t) = x2(t)
for all t > 0. �

As suggested by Proposition V.1, lexicographic inequali-
ties play an important role in characterizing the W-sets. In
order to complete the proof, we first present five lemmas that
deal with sets of lexicographic inequalities.

Lemma V.3 Let P ∈ Rm×n be a full row rank matrix and
α, β ∈ Rn. If the implication Px ≺ α ⇒ Px � β holds,
then α � β.

Proof. Arguing by contradiction, assume that β ≺ α. Then
there exists γ such that β ≺ γ ≺ α. Since P is full row rank,
there exists x̄ such that Px̄ = γ. It follows that β ≺ Px̄ ≺ α.
This is a contradiction. �

Lemma V.4 Suppose that p1, p2 ∈ Rn with p1 6= 0, p2 6= 0
and M ∈ Rm×n be such that[

M
pT2

]
is of full row rank. Then the following statements are
equivalent
1) x ∈ kerM,pT1 x > 0 =⇒ pT2 x > 0.
2) pT2 = rTM + αpT1 for some α > 0 and r ∈ Rn.

Proof. The first statement is equivalent to Mx = 0, pT1 x >
0 and pT2 x < 0 has no solution. By Motzkin’s alternative
theorem, the last one is equivalent to existence of β > 0 and
γ > 0 such that

βpT2 = γpT1 + rTM. (10)

We claim that γ 6= 0. Suppose that γ = 0. Then it follows
from (10) that [

rT −β
] [M
pT2

]
= 0.

Since col(M,pT2 ) is of full row rank, it follows that r = 0
and β = 0. This is a contradiction. So we have pT2 = αpT1 +
rTM where α =

γ

β
> 0. �

Lemma V.5 Suppose that p1, p2 ∈ Rn with p1 6= 0, p2 6= 0.
Then the following statements are equivalent

1) pT1 x < r1 =⇒ pT2 x 6 r2

2) pT1 = αpT2 and r1 6 αr2 for some α > 0
3) pT1 x 6 r1 =⇒ pT2 x 6 r2

Proof.
1)⇒ 2): Firstly, we will prove that pT1 x > 0 implies pT2 x >
0. Indeed, take ξ ∈ Rn such that pT1 ξ < r1. Then we have
pT1 (ξ+ tx) < r1 for all t 6 0. It follows from the hypothesis
that pT2 ξ+tpT2 x = pT2 (ξ+tx) 6 r2 for all t 6 0. This yields
pT2 x > 0. Now, by Lemma V.4 there exists α > 0 such that
pT1 = αpT2 . Then, pT2 x <

r1

α
implies pT2 x 6 r2. By Lemma

V.3, we have
r1

α
6 r2, i.e. r1 6 αr2.
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The implications 2)⇒ 3) and 3)⇒ 1) are obvious. �

Let P ∈ Rm×n be a matrix. For 1 6 k 6 m, denote
the submatrix that is consisted of the first k rows of P by
P [k]. The set of all k×k lower-triangular real matrices with
positive diagonal elements will be denoted by Lk+.

Lemma V.6 Given Pi ∈ Rm×n, qi ∈ Rm with m 6 n
and rank(Pi) = m. Then the following two statements are
equivalent
1) P1x ≺ q1 implies P2x ≺ q2

2) either
i) there exist l 6 m and M ∈ Ll+ such that P [l]

1 = MP
[l]
2

and q[l]
1 ≺Mq

[l]
2 ,

or
ii) there exists M ∈ Lm+ such that P1 = MP2 and q1 =

Mq2.

Proof.
1)⇒ 2): The proof is based on induction on the number of
rows of the matrix P . The case k = 1 follows from Lemma
V.5. Suppose that it holds for all k 6 r < m. We want to
prove that claim holds for k = r+1. The matrices Pi, qi can
be written as

Pi =
[
P

[r]
i

pTi

]
, qi =

[
q

[r]
i

ri

]
.

Then, we have the implication P
[r]
1 x ≺ q

[r]
1 =⇒ P

[r]
2 x �

q
[r]
2 . By the induction hypothesis, either there exist l 6 r

and a matrix M1 ∈ Ll+ such that

P
[l]
1 = M1P

[l]
2 and q[l]

1 ≺M1q
[l]
2 , (11)

or there exists M ∈ Lm+ such that

P
[r]
1 = M2P

[r]
2 and q[r]

1 = M2q
[r]
2 . (12)

If (11) holds then the claim immediately follows. If (12)
holds then P1, q1 can be written as

P1 =
[
M2P

[r]
2

pT1

]
, q1 =

[
M2q

[r]
2

r1

]
.

We will prove that pT1 = sTP
[r]
2 + αpT2 for some α > 0.

Take x0 such that M2P
[r]
2 x0 = M2q

[r]
2 and pT1 x0 < r1. Then

P1x0 ≺ q1 and P
[r]
2 x0 = q

[r]
2 . Thus we have pT2 x0 6 r2.

Now for any ξ ∈ kerP [r]
2 = kerP [r]

1 , if pT1 ξ > 0 then
pT1 (x0+λξ) < r1 for all λ 6 0. It follows that pT2 (x0+λξ) 6
r2 for all λ 6 0. This implies pT2 ξ > 0. By Lemma V.5, there
exist α > 0 and s ∈ Rr such that pT1 = sTP

[r]
2 +αpT2 . Thus

we have
P1 =

[
M2 0
sT α

]
P2 = MP2

where M :=
[
M2 0
sT α

]
∈ Lr+. Note that MP2x ≺ q1 ⇐⇒

P2x ≺ M−1q1. Thus from 1) we get the implication
P2x ≺ M−1q1 =⇒ P2x � q2. By Lemma V.3 we have
M−1q1 � q2. It follows that q1 �Mq2.

2) ⇒ 1): If i) occurs then P1x ≺ q1 ⇒ P
[l]
1 x � q

[l]
1 ⇒

MP
[l]
2 x ≺ Mq

[l]
2 ⇒ P

[l]
2 x ≺ q

[l]
2 ⇒ P2x ≺ q2. If ii) holds

then P1x ≺ q1 ⇒MP2x ≺Mq2 ⇒ P2x ≺ q2. �

Lemma V.7 Given Pi ∈ Rm×n, qi ∈ Rm with m 6 n
and rank(Pi) = m. Then the following two statements are
equivalent:

1) P1x ≺ q1 implies P2x ≺ q2

2) P1x ≺ q1 implies P2x � q2

Proof. Clearly, the former implies the latter. To see the
reverse implication, let x̄ be such that P1x̄+ q1 ≺ 0. Then,
P2x̄ + q2 � 0. Suppose that P2x̄ + q2 = 0. Then, there
exists an integer 0 6 k < m such that P [k]

1 x̄ + q
[k]
1 =

0 and P
[k+1]
1 x̄ + q

[k+1]
1 ≺ 0. Let x′ ∈ kerP [k]

1 . Then,
P

[k]
1 (x̄+ αx′) + q

[k]
1 = 0 and P [k+1]

1 (x̄+ αx′) + q
[k+1]
1 ≺ 0

for all α ∈ [−ε, ε] for some ε > 0. Hence, it must hold that
P2(x̄ + αx′) + q2 � 0 for all α ∈ [−ε, ε]. This means that
x′ ∈ kerP2. Therefore, kerP [k]

1 ⊆ kerP2. This, however, is
a contradiction as both P1 and P2 are of full row rank and
k < m. Consequently, P2x̄+ q2 ≺ 0. �

With all these preparations, we are now ready to complete
the proof. It follows from Theorem V.2 that W−1 ∩W2 = ∅.
In view of Proposition V.1, the following implication holds:

Tn1 x+ en1 ≺ 0 ⇒ Tn2 x+ en2 ≺ 0.

This implies that

Tn−1
1 x+ en1 ≺ 0 ⇒ Tn−1

2 x+ en−1
2 � 0.

In view of Lemma V.7, we get

Tn−1
1 x+ en1 ≺ 0 ⇒ Tn−1

2 x+ en−1
2 ≺ 0.

By applying Lemma V.6, we can conclude that either the
statement 3 or 4 of Theorem III.1.

�

B. 5⇒ 2
Note that W0

1 = W0
2 =: W0 due to the condition 5 and

Proposition V.1. Since (cT , Ai) are observable pairs,W0 is a
singleton, sayW0 = {ξ}. First, we claim that the implication

ẋi = Aixi + ei, xi(0) = ξ ⇒ x1(t) = x2(t) ∀t ∈ R (13)

holds. Since ξ ∈ W0, Aiξ + ei ∈ 〈ker cT |Ai〉. It follows
from observability of (cT , Ai) that Aiξ + ei = 0 and hence
x

(k)
i (0) = 0 for all k > 1. Since xi is an analytic function,

we get xi(t) = ξ for all t.
This shows that the Filippov solution with the initial state

ξ ∈ W0 is both backward and forward Carathéodory. Next,
we will show that the same holds for ξ 6∈ W0. To do so,
we need to introduce some nomenclature and a number of
auxiliary results. For λ ∈ [0, 1], define

A(λ) := λA1 + (1− λ)A2

e(λ) := λe1 + (1− λ)e2.
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Also define
G0 = H0 := {I}

and for k > 1

Gk :=
{
AiG

′ | G′ ∈ Gk−1

}
Hk :=

{
A(λ)H ′ | λ ∈ [0, 1] and H ′ ∈ Hk−1

}
.

Note that
Gk ⊆ Hk

for all k > 0.
Define eI := f . For k > 1 and every H ∈ Hk with

H = A(λk)A(λk−1) · · ·A(λ1)

define

eH := cTA(λk)A(λk−1)...A(λ2)e(λ1)

Also define

Gk := {(G, eG) | G ∈ Gk}
Hk := {(H, eH) | H ∈ Hk}.

Note that
Gk ⊆ Hk (14)

for all k > 0.

Lemma V.8 For every k > 0, conv(Hk) = conv(Gk).

Proof. We prove the statement by induction on k. For
k = 0, it is obvious. Suppose that conv(Gk) = conv(Hk)
holds for all k = 0, 1, . . . ,m. Then we need to prove
that conv(Gm+1) = conv(Hm+1). It follows from (14) that
conv(Gm+1) ⊆ conv(Hm+1). To claim the reverse inclusion,
take H ∈ Hm+1. Then, it is of the form H = A(λ)H ′ =
λA1H

′ + (1 − λ)A2H
′ for some H ′ ∈ Hm. If we write

eH′ = cTRH′ then

eH = cTA(λ)RH′ = λcTA1RH′ + (1− λ)cTA2RH′

= λeA1H′ + (1− λ)eA2H′ .

So (H, eH) ∈ conv(A1H
′, eA1H′), (A2H

′, eA2H′)) for
some H ′ ∈ Hm. By the assumption of the induction, one
has (AiH ′, eAiH′) ∈ conv(AiGm, eAiGm

) ⊆ conv(Gm+1)
where (AiGm, eAiGm) := {(AiG, eAiG) | G ∈ Gm}.
Thus (H, eH) is in conv((A1H

′, eA1H′), (A2H
′, eA2H′)) ⊆

conv(Gm+1) for any H ∈ Hm+1. It implies that Hm+1 ⊆
conv(Gm+1) and further more conv(Hm+1) ⊆ conv(Gm+1).

�

Note that if x is a Filippov solution of the system (1) then
for almost all t there exists λ(t) ∈ [0, 1] such that

A(λ(t)) ∈ H1 and ẋ(t) = A(λ(t))x(t) + e(λ(t)). (15)

Lemma V.9 Let x be a Filippov solution of (1) for some
initial state x0. Let t∗ > 0 and suppose that there exist non-
negative integers m, p and a positive number ε such that
1) cTHx(t∗) + eH = 0 for all H ∈ Hk and 0 6 k 6 m,

2) (−1)p[cTHx(t) + eH ] > 0 for all H ∈ Hm+1 and t ∈
(t∗, t∗ + ε).
Then (−1)p[cTx(t) + f ] > 0 for all t ∈ (t∗, t∗ + ε).

Proof. Let H ∈ Hm. For almost all t > 0 there exists
A(λ(t)) ∈ H1 such that

d

dt
[cTHx(t) + eH ] = cTH[A(λ(t))x(t) + e(λ(t))]

= cTHA(λ(t))x(t) + cTHe(λ(t)) = cTH ′(t)x(t) + eH′(t)

where H ′(t) ∈ Hm+1. Then it follows from 2) that

d

dt
(−1)p{cTHx(t) + eH} > 0

for all t ∈ (t∗, t∗ + ε). This shows that

(−1)p{cTHx(t) + eH} > (−1)p{cTHx(t∗) + eH} = 0

for all H ∈ Hm and t ∈ (t∗, t∗ + ε). By repeating similar
arguments, after m steps, we obtain

(−1)p[cTx(t) + f ] > 0

for all t ∈ (t∗, t∗ + ε). �

Lemma V.10 Suppose that the condition 5 of Theorem III.1
holds. Let x be a Filippov solution of the differential
inclusion (1) for some initial x0 and let m, q ∈ N. If
T qi x(t∗) +eqi = 0 and (−1)m{cTAq+1

i x(t∗) + cTAqi ei} > 0
then
1) cTHx(t∗) + eH = 0 for all H ∈ Hk and 0 6 k 6 q.
2) (−1)m{cTHx(t∗) + eH} > 0 for all H ∈ Hq+1.

Proof. First we prove that

cTGx(t∗) + eG = 0 (16)

for all G ∈ Gk, 0 6 k 6 q by induction on k and cTGx(t∗)+
eG > 0 for all G ∈ Gq+1. It is easy to see that (16) holds
with k = 0. Suppose that (16) holds for all 0 6 k 6 p < q,
i.e.,

cTGx(t∗) + eG = 0,∀ G ∈ Gk, 0 6 k 6 p.

We prove that (16) holds for k = p + 1. Indeed, by the
assumption we see that cTGix(t∗) + eGi

= 0 where Gi =
Ap+1
i . Taking any G ∈ Gp+1, it is of the form G = AiG

′

for some G′ ∈ Gp. We write eG′ in the form eG′ = cTRG′ .
Then we get eG = cTAiRG′ and

cTGx(t∗) + eG = cTAiG
′x(t∗) + cTAiRG′ .

Since G′ ∈ Gp, it is of the form G′ = AjG
′′ for some

G′′ ∈ Gp−1. We claim that

cTAiAjG
′′x(t∗) + cTAiAjRG′′

= α{cTAjAjG′′x(t∗) + cTA2
jRG′′}

for some α > 0. The claim is obvious if i = j. In the case
i 6= j note that we always have relations

T 1
i = MT 1

j , e
1
i = Me1

j
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for some M ∈ L2
+. It follows that

cTAiAjG
′′x(t∗) + cTAiAjRG′′

= m21c
TAjG

′′x(t∗)+m22c
TAjAjG

′′x(t∗)+cTAiAjRG′′

= m22c
TAjAjG

′′x(t∗) + cTAiAjRG′′ −m21c
TAjRG′′

= m22{cTAjAjG′′x(t∗) + cTA2
jRG′′}.

Thus we have

cTGx(t∗) + eG = α{cTA2
iG
′′x(t∗) + cTA2

iRG′′}

for some G′′ ∈ Gp−1 and α > 0. By applying the same
arguments, we obtain

cTGx(t∗) + eG = α{cTGix(t∗) + eGi
} = 0.

Therefore, the formula (16) is proved. Moreover, through the
proof we also see that

cTGx(t∗) + eG = γG{cTGix(t∗) + eGi}

for all G ∈ Gq+1 and for some γG > 0. So it follows from
the second assumption that

(−1)m{cTGx(t∗) + eG} = (−1)m{cTG1x(t∗) + eG1} > 0

for all G ∈ Gq+1. Now let H ∈ Hk. Since Hk ⊆
conv(Hk) = conv(Gk), there exists a positive integer num-
ber s = s(k,H) depending on H such that

(H, eH) =
s∑
j=1

λj(Gj , eGj ).

where λj ∈ [0, 1], λ1 + · · · + λs = 1 and Gj ∈ Gk, j =
1, 2, . . . , s.

It follows from (16) that

cTHx(t∗) + eH =
s∑
j=1

λj{cTGjx(t∗) + eGj} = 0

for all H ∈ Hk, 0 6 k 6 q and

(−1)m{cTHx(t∗) + eH}

=
s(q+1,H)∑
j=1

λj(−1)m{cTGjx(t∗) + eGj} > 0

for all H ∈ Hq+1. �

With all these preparations, we are ready to complete the
proof. Let x be a solution of the system (1) with the initial
state x0 in the sense of Filippov. Let t∗ ∈ R. If x(t∗) ∈ W0

then the claim follows as shown before. Consider the case
that x(t∗) 6∈ W0. First, we want to show that x is a forward
Carathéodory solution, i.e. there exists εt∗ > 0 such that at
least one of relations (3) holds for all t ∈ (t∗, t∗+εt∗). Note
that the continuity of x readily implies the claim if cTx(t∗)+
f 6= 0. Suppose that cTx(t∗) + f = 0. Since x(t∗) 6∈ W0, it
follows from condition 5 of Theorem III.1 that there exists
a nonnegative integer q such that T qi x(t∗) + eqi = 0 and
(−1)p{cTA(q+1)x(t∗) + cTAqi ei} > 0. By Lemma V.10, we
obtain cTHx(t∗) + eH = 0 for all H ∈ Hk, 0 6 k 6 q

and (−1)p{cTHx(t∗) + eH} > 0 for all H ∈ Hq+1. Since
x is continuous, for each H ∈ Gq+1 there exists a positive
number εH such that (−1)p{cTHx(t∗) + eH} > 0 for all
t ∈ (t∗, t∗ + εH). Because Gq+1 is a finite set, we can
define εt∗ := min

H∈Gq+1
{εH}. Since the set Hq+1 is contained

in the convex hull of the set Gq+1, we can conclude that
(−1)p{cTHx(t∗) + eH} > 0 for all t ∈ (t∗, t∗ + εt∗) and
for all H ∈ Hq+1. By Lemma V.9 we get

(−1)p{cTx(t) + f} > 0

for all t ∈ (t∗, t∗+εt∗). Thus we x is a forward Carathéodory
solution as claimed. Since the condition 5 of Theorem III.1
is invariant under time reversal, we can conclude that x is
also backward Carathéodory solution.

C. 5⇒ 1

We have just shown that any Filippov solution is forward
Carathéodory. To prove this statement, we show that all
forward Carathéodory solutions are right-unique. Let x1 and
x2 be two forward Carathéodory solutions for the initial state
x0. If these solutions are not identical, then there exist t∗ > 0
and εt∗ > 0 such that x1(t) = x2(t) for all t ∈ [0, t∗] and

ẋ1(t) = Aix1(t) + ei, (−1)i[cTx1(t) + f ] > 0

ẋ2(t) = Ajx2(t) + ej , (−1)j [cTx2(t) + f ] > 0

for all t ∈ [t∗, t∗ + εt∗) with i 6= j. Without loss generality,
we can assume that i = 1 and j = 2. This implies that
W1 3 x1(t∗) = x2(t∗) ∈ W2. Since 5 implies that

W−1 ∩W2 = ∅ and W1 ∩W+
2 = ∅, (17)

we get x1(t∗) = x2(t∗) ∈ W0 = W0
1 = W0

2 . Then, it
follows from (13) that x1(t) = x2(t) on [t∗,∞). This shows
x1(t) = x2(t) for all t > 0. By reversing the time and using
the backward Carathéodory property, one can conclude that
x1(t) = x2(t) for all t ∈ R. Therefore, all Filippov solutions
are right-unique.

D. 6⇒ 1

This immediately follows from Theorems 2.10.1 and
2.10.2 of [4].

VI. CONCLUSIONS

In this paper, we provided a set of necessary and a set
of sufficient conditions for uniqueness of solutions to a
piecewise affine bimodal dynamical system with possibly
discontinuous vector field. These conditions are less restric-
tive than those of general differential inclusions such as one-
sided Lipschitzian or monotonicity-type conditions.

Further research concerns extensions to multimodal case
on the one hand and to the case where external inputs present
on the other hand.
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