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Abstract—In this paper we discuss the application of max-plus 
arithmetic to stochastic control problems. The dynamic 
programming equation is not max-plus linear in the stochastic 
case, but a max-plus distributivity property permits efficient 
value function and control computation.  We illustrate the 
technique by controlling the van der Pol equation. 

I. INTRODUCTION 
The recent successes of max-plus and more general 
idempotent structures for attacking nonlinear control 
problems offer the potential for revolutionary improvements 
in our ability to design and implement nonlinear controls for 
real applications.  The key ingredient in max-plus approaches 
to nonlinear control is the max-plus linearity of the Bellman 
equation of dynamic programming.  One of the primary 
difficulties in the stochastic setting has been the lack of 
commutation of expectation and maximization. In this paper, 
we consider a max-plus distributivity property that, when 
coupled with max-plus finite element expansion, permits an 
efficient propagation of the Bellman equation.  We illustrate 
the concepts with a simple nonlinear control example using 
the van der Pol equation. 

II. PROBLEM FORMATION 
We begin with a standard stochastic differential equation of 
the form 

00 )(,)(),( XtXdWXdtuXfdX =+= σ  
in which W is a standard Brownian motion.  We define the 
cost functional 
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which is to be maximized over admissible controls, which are 
progressively measureable and satisfy  
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The Bellman equation of dynamic programming (DPE) takes 
the form 
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in which V is the value function 
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The value function is usually characterized through the 
Hamilton-Jacobi-Bellman partial differential equation (HJB) 
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in which the maximization is over Rm. The optimal control is 
determined, as a function of the time and state variables, as the 
argument that attains the max in the HJB, or alternatively, 
piecewise as the argument that attains the max in the DPE.  
Numerical solution schemes tend to fall into two basic 
approaches:  numerical PDE approaches (e.g., [1,2]) and 
stochastic process approaches [3].  We are seeking a third 
approach here, using idempotent algebraic techniques that have 
been demonstrated very effective in the deterministic setting 
(see, e.g., [4,5]).  However, it is at this very point that the max-
plus linearity fails for the stochastic control problem:  the 
semigroup for backward propagation 
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is not (necessarily) linear, because the maximization and 
expectation cannot be interchanged in order.  The crucial 
observation to move forward involves the max-plus 
distributive property, which we discuss after introducing max-
plus algebra. 

III. MAX-PLUS ALGEBRA AND DYNAMIC 
PROGRAMMING 

The max-plus algebra, as discussed in [6,7,8,9,10,11], 
involves a redefinition of arithmetic operations, for 
computational and analytical benefit.  We consider the real 
numbers, augmented by ∞− : { }∞−∪=− RR .  On this 
set, we define two operations, ⊕  and ⊗ , by  
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It is well known that −R forms a commutative semi-ring 
under these operations.  The additive identity is ∞− while 
the multiplicative identity is 0.   Except for the additive 
identity, every element has a multiplicative inverse, 
suggesting that one might be able to extend the structure to a 
field structure.  However, addition in this semi-ring is 
idempotent, meaning that .aaa =⊕  It is important to note 
that the only rings satisfying additive idempotency are trivial; 
that is, the only element is the additive identity.  Thus, 
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extending the semi-ring to a ring (and hence a field) is not a 
possibility.   
 
From these basic operations, we can build standard linear 
algebraic objects, such as matrices and vectors.  If we 
consider an nn × array, A, of elements of −R  and a column 
vector, x, of n elements of −R , define the max-plus matrix-
vector product xAy ⊗= by  
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Similarly, we may define max-plus matrix multiplication and 
addition: 
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Raising a matrix to a power, then, is repeated applications of 
multiplication.   
 
To illustrate the application of max-plus algebraic structure, 
we consider a standard nonlinear control problem.  We begin 
with a dynamical system under control, of the form 
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with a control objective given by 
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which is to be maximized of the set of admissible control 
functions, ).,(),( 0

2
0 ff ttLttUu ⊂∈   For a given control 

function and initial state, we denote the solution of the 
differential equation by ),,;( 00 uxtx • .  To apply the finite 
element method to dynamic programming, we first examine 
the deterministic Bellman equation 
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We define the family of operators tsS ,  by  
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in which G denotes the running cost integral and the operator 
Lu is defined by 

)),,;(())(( uytsxyLu φφ = . 
By inspection, for each u, this operator is max-plus linear.  
Thus, as a max-plus-linear-combination of max-plus linear 
operators, the dynamic programming propagation operators 
are max-plus linear. 
 
The dynamic programming propagation operator in the 
stochastic case, 
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, 
however, is not max-plus linear.  However, we may use the 
distributive property of multiplication over addition, to apply 
max-plus effectively. 
 
Defining )},2,2(),1,2(),2,1(),1,1{(},2,1{ == IJI we 
note that 
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More generally, as noted by McEneaney [Mc1], we have this 
fact. When },,,2,1{ nN L= },,,2,1{ nM L= and =MJ the 
set of all ordered n-tuples of elements of M, then 
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Note that the number of summands has increased dramatically 
on the right side of the equality.  This distributive property is 
generalized further in the following result (see [12]). 
 
Theorem 1.  Suppose that W and Z are separable metric 
spaces.  Suppose that P is a finite Borel measure on W. 
Suppose that h is a measureable function on 

ZW × satisfying the following condition: for every 0>ε  
and every Ww∈ ,  there exists a 0>δ  such that 
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in which M(W,Z) denotes the set of Borel measureable 
functions mapping W to Z.   
 
To apply this result, we develop max-plus finite element 
approximations to the Bellman equations. 

IV. FINITE ELEMENT APPROXIMATIONS 
Max-plus finite elements (see, e.g., [4,5]) provide useful 
approximation tools for dynamic programming.  Within the 
context of this work, we use the finite elements in conjunction 
with max-plus distributivity to approximate solutions to the 
stochastic Bellman dynamic programming equation.  In this 
paper, we examine the linear elements  

iii xxcx −−=)(ψ , 
 
in which ix are the element nodes, and ic are scale 
parameters.  A max-plus approximation of a function f takes 
the form 
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in which the weights ia are defined by (again, see [4,5]) 

{ })()(max xfxa ixi −−= ψ . 

 Note that a max-plus interpolation has an interesting and 
perhaps unintuitive structure.  Figure 1 below illustrates the 
projection for an example function. 
 

 
Figure 1.  Blue curve is the original function; red curve is the max-plus finite 

element projection. 

 
To apply the finite element method to dynamic programming, 
we first examine the deterministic Bellman equation 

⎭
⎬
⎫

⎩
⎨
⎧

+= ∫
s

t

suytsxVduxgtyV )),,,;(())(),((max),( τττ

 
which is max-plus linear.  We plug in the finite element 
expansion 
 
 
 
so that the approximate Bellman equation becomes 
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in which V~ is computed directly using the finite element 
expansion.  The second step in the propagation process is to 
project V~ onto the finite element basis: 
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Recalling the semigroup propagation for the stochastic case, 
we have 
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into which we plug a finite element expansion 
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Applying Theorem 1, we have 
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in which the distributivity property of the theorem involves 
the set of random variables taking values in the set {1,2, …, 
N} for the interchange of expectation and maximization order.  
This propagation is then projected back onto the finite 
element basis through the relation as in the deterministic 
situation. 

V. AN EXAMPLE PROBLEM:  THE VAN DER POL 
OSCILLATOR 

To illustrate the application of max-plus methods in a 
nonlinear control example, we consider the van der Pol 
oscillator [13]: 

uxxxx =+−+ &&& )1( 2μ  
Here μ is a constant, and u is the control.  
 
The quantity we seek to minimize is  
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a standard quadratic regulator problem.  We rewrite the 
second order equation as a first order system 
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Likewise, we rewrite the optimization problem as 
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The van der Pol system has a well known asymptotic 
behavior:  the equilibrium point (0,0) is unstable, and there is 
a stable limit cycle with approximate radius 2, for smallμ .   
 
In order to illustrate the dynamic programming approach, we 
compare to the simple approach of linearization.  That is, we 
linearize the system around the (0,0) equilibrium, and we 
apply standard linear quadratic regulator theory.  We see in 
Figure 2 that the uncontrolled system oscillates at radius 2, 
while the LQR controller reduces the radius of the oscillation 
somewhat.  The full nonlinear controller drives the system to 
(0,0). 
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Figure 2.  Uncontrolled (in black asterisk), linearized control (in blue circle), 

and nonlinear control (in red x) trajectories for the van der Pol system. 

The controllers for the two systems have some similarities.  In 
Figure 3, we compare the (long time asymptotic) controllers 
from the LQR solution and the value function computation. 

 
Figure 3.  Linearized control (smooth surface) and nonlinear control (mesh 

surface) as function of the state variable (x,y). 

To examine the stochastic controller, we add plant noise to 
the system: 
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in which 21,WW are standard Brownian motions.  The 
resulting trajectories for one simulation of the uncontrolled 
system and the LQR controlled system are shown in Figure 4. 
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Figure 4.  Uncontrolled (in black) and LQR controlled (in blue) trajectories of 

the van der Pol system. 

The trajectories wander around the limit cycles due to the 
plant noise.  If we add the nonlinearly controlled trajectory, 
the result is shown in Figure 5. 
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Figure 5.  Uncontrolled (in black), LQR controlled (in blue), and nonlinear 

controlled (in red) trajectories of the van der Pol system. 

The nonlinear control drives the system to (0,0)  on average, 
with small variance, an improvement over the LQR control. 
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