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Abstract— We discuss balanced truncation (BT) based meth-
ods for model order reduction (MOR) of linear time invariant
(LTI) systems with many input or many output terminals.
Applying BT methods makes it necessary to balance the
system, which is equivalent to finding the controllability and
observability Gramian of the system in a special diagonal
form. The Cholesky factors of these Gramians are efficiently
computable as solutions of dual Lyapunov equations for systems
with only few inputs and outputs. After a brief introduction and
a short recollection of basic knowledge of BT, we show a method
to get the Gramians’ factors also for systems with many inputs
and outputs with the help of the Gauss-Kronrod quadrature
formula. We show some numerical results using this quadrature
rule and explain how to get the BT reduced order model out
of these results.

I. INTRODUCTION

MOR turned out to be a powerful and necessary tool in
the context of the simulation of various applications and
problems over the last decades [1], [4], [18]. Modeling,
especially in the area of circuit simulation but also in
mechanical, biological and chemical applications, leads to
LTI continuous-time systems of the form

ẋ(t) = Ax(t)+Bu(t), x(0) = x0,
y(t) = Cx(t)+Du(t). (1)

Here A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, x(t) ∈ Rn

contains internal state variables, u(t) ∈ Rm is the vector of
input variables, y(t) ∈Rp is the output vector, x0 ∈Rn is the
initial value and n is the number of state variables, called
the order of the system. So far, MOR methods concentrated
on reducing the order of the system under the assumption
that the dimensions of the input and output vector are much
smaller than the order itself, i.e., m, p ¿ n. Due to new
applications this assumption is violated more and more often,
e.g., when power grids are included in circuit simulation.
Although there are methods trying to handle this challenge
[8], [5], [13], the established methods – like BT methods
[3], [11], [16], Krylov subspace methods [10], [9], proper
orthogonal decomposition (POD) based methods, or reduced
basis methods – have a common weakness in dealing with a
lot of inputs or outputs. We explain a way to use balanced
truncation methods efficiently in case of having either a lot
of inputs or a lot of outputs.
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II. BALANCED TRUNCATION

To apply balanced truncation we compute the controlla-
bility and observability Gramians

X = Y =:
[

Σ1
Σ2

]
=




σ1
. . .

σn


 , (2)

of (1) as solutions of the dual Lyapunov equations

AX +XAT +BBT = 0 (3)

and

ATY +YA+CTC = 0. (4)

Due to storage, efficiency and accuracy reasons, rather than
computing X and Y themselves, usually one computes ap-
proximate factors XC and YC of low rank such that

X ≈ XCXT
C

and

Y ≈ YCY T
C .

Using these factors, we compute a singular value decompo-
sition of the form

XT
C YC = [U1U2]

[
Σ1 0
0 Σ2

][
V T

1
V T

2

]
. (5)

Now we define the balancing transformations

Tl = YCV1Σ−1/2
1 (6)

and

Tr = XCU1Σ−1/2
1 , (7)

where Σ−1/2
1 = diag( 1√σ1

, ..., 1√σk
), such that we are able to

compute the reduced system as

(Ã, B̃,C̃, D̃) := (T T
l ATr,T T

l B,CTr,D).

Note, that this (as an example) is the square root variant of
balanced truncation. For the following we note that returning
to the original formulation of Moore [15], Tl ,Tr and the σi
can also be computed from XT

C Y XC or Y T
C XYC, respectively.
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III. LOW RANK ALTERNATING DIRECTION IMPLICIT
(ADI) METHOD

The efficient solution of the Lyapunov equations (3) and
(4) is the bottleneck of BT MOR methods dealing with
systems described above. Let us for now assume we look
at systems (1) with many outputs, i.e., p is large and m¿ n.
We consider (3)

AX +XAT +BBT = 0.

The ADI iteration for the Lyapunov equation is given by

X0 = 0,
(A+ p jI)X j− 1

2
= −BBT −X j−1(AT − p jI),

(A+ p jI)XT
j = −BBT −XT

j− 1
2
(AT − p jI),

with j = 1, . . . ,J, see [21]. We rewrite this as a one step
iteration

X0 = 0,
X j = −2p j(A+ p jI)−1BBT (A+ p jI)−T

+(A+ p jI)−1(A− p jI)X j−1
·(A− p jI)T (A+ p jI)−T ,

and insert the solution in factorized form, so we get

XC,0XT
C,0 = 0,

XC, jXT
C, j = −2p j(A+ p jI)−1BBT (A+ p jI)−T

+(A+ p jI)−1(A− p jI)XC, j−1
·XT

C, j−1(A− p jI)T (A+ p jI)−T .

It is possible to express the low rank factor of the solution
as

XC, j =
[√−2p j(A+ p jI)−1B,

(A+ p jI)−1(A− p jI)XC, j−1
]
,

but the number of columns to be processed grows in each
step. Observing that (A− piI), (A + pkI)−1 commute [12],
we rewrite XC,J as

XC,J =
[
xC,J , PJ−1xC,J , PJ−2(PJ−1xC,J), . . . ,

P1(P2 · · ·PJ−1xC,J)
]
,

where
xC,J =

√
−2pJ(A+ pJI)−1B

and

Pi :=
√−2pi√
−2pi+1

(A+ piI)−1(A− pi+1I),

=
√−2pi√
−2pi+1

[
I− (pi + pi+1)(A+ piI)−1

]
.

Using LRADI algorithms described in [17] we are able to
compute XC efficiently, but we fail doing the same with YC.
Due to the fact that we add a fixed number of columns
depending on the rank of C, which is at most p (and in fact
often is), we end up with YC,J ∈ Rn×Jp, where Jp exceeds
n easily for large p, and thus the LRADI iteration is not
efficient anymore.

IV. THE HIGH RANK SOLUTION

Equations (6) and (7) show that we need σi, i = 1, . . . ,k,
for computing the reduced order model. Therefore again, we
need XC and YC. Because of the dimension of C also rank(YC)
is large. It is too expensive to compute the factor of the
solution of (4) and perform the SVD in (5). On the other
hand, (2) shows that the nonzero σi are also computable as

σi =
√

λi(XY )

=
√

λi(XT
C Y XC),

where λi(·) denotes the i-th eigenvalue of matrix (·), ordered
by magnitude. From systems and control theory [20], we
know that for ω ∈ R, we can express Y as

Y =
1

2π

∫ ∞

−∞
( jωI−AT )−1CTC( jωI−AT )−H dω. (8)

Using XT
C Y XC and replacing Y as in (8), we get

XT
C Y XC = (9)
1

2π

∫ ∞

−∞
XT

C ( jωI−AT )−1CTC( jωI−AT )−HXC dω.

With a suitable quadrature rule we can cheaply approximate
the matrix product

XT
C Y XC ≈ 1

2π

N

∑
l=0

λl f (ωl) (10)

with

f (ω) = XT
C ( jωI−AT )−1CTC( jωI−AT )−HXC,

if the evaluation of f is efficient enough, which is the
case if XC has just a few columns. Reason is the fact that
computing W (ω) = ( jωI−AT )−HXC is equivalent to solving
a sparse linear system of equations with few right-hand
sides. Moreover, the function evaluation required to apply
the quadrature rule then only needs matrix-vector multiplies
of CT or C with W (ω)H or W (ω) (exploiting symmetry, only
one of the products is necessary), respectively. This is usually
very cheap, e.g., in circuit simulation often C = [0, Im ] so
that the matrix-vector multiplications come for free. We need
an adaptive and highly accurate quadrature which, in the best
case, provides an error estimation. We choose the Gauss-
Kronrod quadrature formula explained in the next section as
it allows approximating improper integrals and is capable to
achieve a desired accuracy by adaptive refinement.

V. THE GAUSS-KRONROD QUADRATURE FORMULA

Well known is the n-point Gaussian quadrature rule for
the integration over a domain [a,b] (often [−1,1])

∫ b

a
f (x)dx≈

n

∑
i=1

λi f (xi)

with n suitable quadrature points xi and weights λi. Gauss
quadrature leads to exact results for polynomials of degree
2n−1 or less. Gauss-Kronrod Quadrature is an enlargement
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of the n-point Gauss quadrature with n + 1 new quadrature
points and own weights ai and bi such that

∫ b

a
f (x)dx≈

n

∑
i=1

ai f (xi)+
n+1

∑
i=1

bi f (yi).

It is an example for a nested quadrature rule and leads to
exact result for polynomials up to degree 3n+1. The differ-
ence between the Gauss and the Gauss–Kronrod quadrature
is often interpreted as error estimation of the integration.
After an adaptive refinement of the integration domain [a,b],
a transformation of the quadrature points and weights per
subdomain leads to an accurate approximation to the integral
within the needed interval. For symmetric integrants this
procedure simplifies. For more details of the computation
of the Gauss–Kronrod quadrature, see [14], [6].

VI. GETTING THE REDUCED ORDER MODEL

From (10) we obtain an approximation to XT
C Y XC. We have

to compute the projection matrices for balanced truncation
to get the reduced order model. These projection matrices W
and V are the result of a Schur decomposition of XT

C Y XC. [2]
proposes this approach including a numerically efficient and
accurate algorithm to compute the needed dominant invariant
subspaces. First, a basis Vr of the right invariant subspace of
the small size matrix XT

C Y XC is computed by

(XT
C Y XC)Vr = VrΛ1,

where Λ1 = diag(λ1, . . . ,λr), λi are the r largest eigenvalues
of XT

C Y XC. The columns of Vr span the required subspace.
Next, we calculate the left dominant invariant subspace basis
Wl by

W T
l (XT

C Y XC) = Λ1W T
l .

Similarly to the balancing-free SR variant of BT we compute
a QR decomposition of

Vr = QrRr

and
Wl = QlRl ,

with the goal to orthogonalize Vr and Wl . Setting

Tr = Qr

and
Tl = (QT

l Qr)−1QT
l ,

we obtain the reduced order model by the projection

(Ã, B̃,C̃, D̃) := (T T
l ATr,T T

l B,CTr,D).

VII. NUMERICAL INVESTIGATIONS

From [7] we obtain a model of the Orr–Sommerfeld
operator for the Taylor-Couette flow, which is in perturbation
velocity variables

A = (−D2)
1
2 D−2

(
−i jkD2 +

1
Re

D4
)(−D2)− 1

2 , (11)

with D = d
dy . We assume the inverse operators to be well

defined. Equation (11) together with the definition of the
input matrix B ∈ R100×5 as

B =
[

I5
0

]
,

and the output matrix C ∈ R80×100 as

C =
[
I80 0

]
,

leads to system (1), which simulates the evolution of 2-
dimensional perturbations in terms of velocities. Matrix A
is of dimension 100× 100 for Reynolds number Re = 800
and k = 1. We use an example of very small dimension to
be able to compute both solution factors XC and YC with
the help of the LRADI method described above — a more
efficient implementation and more involved numerical tests
are work in progress and will be reported in the future.

We calculate the matrix product (XT
C Y XC)ADI and compare

to the result of the approximation (XT
C Y XC)GK we obtain

from (9) with help of the Gauss–Kronrod quadrature. The
difference matrix ‖(XT

C Y XC)ADI−(XT
C Y XC)GK‖F is analyzed

in Frobenius norm.

Number of
iterations integration ‖(XT

C Y XC)ADI − (XT
C Y XC)GK‖F

domain refinement
1 7.2836e-006
3 7.0056e-013
6 6.2575e-015

We see, the more we refine the domain of integration the
more accurate the results are. Although we have no exact
analysis of computational time the approach we propose is
the method to choose in case of systems with many inputs
or outputs.

VIII. CONCLUSIONS

If a method is available that computes XC directly in an
efficient way, e.g., Krylov subspace or ADI methods, see
Sec. III and [16], [19], and XC has few columns, then (9)
can cheaply be approximated by a suitable quadrature rule.
Gauss-Kronrod method fulfills the requirements of such a
quadrature rule and also provides an estimation for the error
caused by the numerical integration. Analog considerations
can be done for the case of many inputs with just a
few outputs. First numerical investigations using the Orr-
Sommerfeld operator for Couette flow show that the method
works accurately. In the future we will extend this work also
for descriptor systems which opens the door for really large
scale problems in the area of circuit simulation applications.
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