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Geometric Control Theory for Linear Systems

Block 1: Foundations [10:30 - 12.30]:

Talk 1: Motivation and historical perspective, G. Marro [10:30 - 11:00]

Talk 2: Invariant subspaces, L. Ntogramatzidis [11:00 - 11:30]

Talk 3: Controlled invariance and invariant zeros, D. Prattichizzo [11:30 - 12:00]

Talk 4: Conditioned invariance and state observation, F. Morbidi [12:00 - 12:30]

Block 2: Problems and applications [15:30 - 17.30]:

Talk 5: Stabilization and self-bounded subspaces, L. Ntogramatzidis [15:30 - 16:00]

Talk 6: Disturbance decoupling problems, L. Ntogramatzidis [16:00 - 16:30]

Talk 7: LQR and H2 control problems, D. Prattichizzo [16:30 - 17:00]

Talk 8: Spectral factorization and H2-model following, F. Morbidi [17:00 - 17:30]
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Outline

Stabilisation of Controlled Invariant Subspaces

Self bounded subspaces

Disturbance decoupling problem (DDP)
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Controlled invariant and output nulling subspaces

Σ :

{

ẋ(t) = Ax(t) + B u(t) x(0) = x0

y(t) = C x(t)

ℬ
def
= imB and C

def
= kerC

Controlled invariant subspaces are loci of trajectories for Σ:

if x0 ∈ V , we can find u(⋅) such that x(t) ∈ V for all t ≥ 0;

the subspace of minimal dimension containing a trajectory x(⋅) is
controlled invariant.

Output nulling subspaces are controlled invariants contained in kerC .

V★
(ℬ,C) is the largest output-nulling subspace: if we want x(⋅) to yield

y = 0, we need x(t) ∈ V★
(ℬ,C) ∀ t.
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Friends

Given a controlled invariant V and x0 ∈ V ,

a control u exists that maintains the state trajectory on V

such control can always be expressed as a static feedback

u(t) = F x(t)

where F is a friend of V , i.e., (A+ B F )V ⊆ V :

ẋ(t) = (A+ B F ) x(t) x(0) ∈ V =⇒ x(t) ∈ V ∀ t ≥ 0
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A Trivial Friend

AV ⊆ V + ℬ means

∃X , U : AV = V X + B U

where V is a basis of V ;

let F be such that U = −F V ;

then
(A+ B F )V = V X

which means (A+ B F )V ⊆ V .

We are not exploiting 2 degrees of freedom:

in the solution of AV = V X + B U

in the solution U = −F V
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Friends
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Friends - Linear equations

Equation
M X = N

admits solutions if and only if imN ⊆ imM. The set of solutions is

{X = M+ N + H K ∣ imH = ker M and K is arbitrary}

Equation
X M = N

admits solutions if and only if kerN ⊇ kerM. The set of solutions is

{X = N M+ + K H ∣ kerH = imM and K is arbitrary}
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Friends

All solutions of AV = V X + B U (or AV = [V B ]

[

X

U

]

) are

[

X

U

]

=
[

V B
]+

AV + H1 K1

where imH1 = ker
[

V B
]

and K1 is arbitrary;

The set of solutions of U = −F V is given by

F = −U (V TV )−1 V T + K2 H2

where kerH2 = V and K2 is arbitrary.

It is easy to show that

K1 only affects the internal eigenvalues of V

K2 only affects the external eigenvalues of V

L. Ntogramatzidis (Curtin University) MTNS - July 5-9, 2010 9 / 23



Friends - Internal Stabilization
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Friends - Internal stabilization

Given V and a basis V , the reachable subspace on V is given by

ℛV = V ∩ S★
V

where S★
V
is given by

{

S1 = imB

Si = imB + A (Si−1 ∩ V) i = 2, 3, . . .

Now, we use a basis V = [RV Vc ] for V such that imRV = ℛV .

We can write

[

X

U

]

=
[

V B
]+

AV + H1 K1 as

⎡

⎣

X11 X12

O X22

U1 U2

⎤

⎦ =
[

RV Vc B
]+

A
[

RV Vc

]

+

⎡

⎣

H1

O

H3

⎤

⎦

[

K ′
1 K ′′

1

]
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Friends - Internal stabilization

Hence
⎡

⎣

X11 X12

O X22

U1 U2

⎤

⎦ =
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⎣
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⎣
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O
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⎤

⎦

[

K ′
1 K ′′

1

]

which means
⎡

⎣

X11 X12

O X22

U1 U2

⎤

⎦ =

⎡

⎣

Ξ11 + H1 K
′
1 Ξ12 + H1 K

′′
1

O Ξ22

Ω1 + H3 K
′
1 Ω2 + H3 K

′′
1

⎤

⎦

(Ξ11,H1) is controllable =⇒ K ′
1 can place all the spectrum of

Ξ11 + H1 K
′
1.
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Friends - Internal stabilization

Assignment of internal dynamics using GA for MATLABR⃝:

>> Rv=ints(V,miinco(A,V,B));

>> r=size(V,2); q=size(Rv,2);

>> V=ima([Rv V],0);

>> XU=pinv([V B])*A*V;

>> H=ker([V B]);

>> Ξ11=XU(1:q,1:q);

>> H1=H(1:q,:);

>> p=[�1 �1 ...�q] (�i arbitrary)

>> K1=-place(Ξ11,H1,p);

>> XU(:,1:q)=XU(:,1:q)+H*K1;

>> L=XU(r+1:r+m,:);

>> F1=-L*pinv(V);
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Friends - External Stabilization
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Friends - External stabilization

Changing coordinates of (A+ B F1,B) with T =
[

T1 T2 T3

]

such
that

imT1 = V
[

T1 T2

]

= V +ℛ where ℛ = min J(A, imB)

leads to

Ā = T−1(A+BF1)T =

⎡

⎣

A11 A12 A13

O A22 A23

O O A33

⎤

⎦, B̄=T−1B =

⎡

⎣

B1

B2

O

⎤

⎦, F̄ =F1T

O are due to V being (A+ B F1)-invariant;

O are due to V +ℛ being A-invariant:

AV ⊆ V+ℬ, Aℛ ⊆ ℛ, ℛ ⊇ ℬ =⇒ A(V+ℛ) ⊆ V+ℬ+ℛ = V+ℛ

(A22,B2) is controllable.
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Friends - External stabilization

Assignment of external dynamics with GA. Construction of T :

>> R=mininv(A,B);

>> T1=V; c1=size(T1,2);

>> c=size(ima([T1,R],0),2);

>> T1T2=ima([T1,R],0);

>> if c>=c1+1, T2=T1T2(:,c1+1:c); c2=size(T2,2);

>> else T2=[]; c2=0;

>> end

>> if c<n, T3=ortco([T1 T2]);

>> if any(T3), T3=[]; end

>> c3=size(T3,2);

>> T=[T1 T2 T3];

>> else c3=0; T=[T1 T2];

>> end
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Friends - External stabilization

Assignment of external dynamics with GA. Construction of F :

>> if c2==0,

>> F=F1;

>> else

>> Ap=inv(T)*(A+B*F1)*T; Bp=inv(T)*B; Fp=F1*T;

>> As=Ap(c1+1:c1+c2,c1+1:c1+c2);

>> Bs=Bp(c1+1:c1+c2,:);

>> p=[�1 �1 ...�c2 ] (�i arbitrary)

>> Fp(:,c1+1:c1+c2)=-place(As,Bs,p);

>> F=Fp*inv(T);

>> end
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Self-bounded subspaces

Self-bounded subspaces are particular output-nulling subspaces.

Σ :

{

ẋ(t) = Ax(t) + B u(t) x(0) = x0

y(t) = C x(t)

Let V be output-nulling and a friend F s.t. (A+ B F )V ⊆ V ⊆ kerC .
Suppose we want:

to “escape” V

to remain in kerC , and therefore in V★
(ℬ,C) =⇒ y = 0.

The set of state velocities that can keep us in kerC is

T (x(t)) = (A+ B F ) x(t) + (V★
(ℬ,C) ∩ imB)

If x0 ∈ V and V ⊇ V★
(ℬ,C) ∩ imB , we cannot escape V , unless we leave

kerC . In this case, V is called self-bounded.
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Self-bounded subspaces: Properties

Definition

Let V be an output-nulling for (A,B ,C ) and let V★ = maxV (A,ℬ, C).
Then, V is said to be self-bounded if

V ⊇ V★
(ℬ,C) ∩ imB

We define

Φ(ℬ, C) = {V ∈ V (A,ℬ, C) ∣ V ⊇ V★
ℬ,C ∩ imB}

If V ∈Φ(ℬ, C), then V cannot be exited by means of any trajectory on C.
Trivially:

V★
(ℬ,C) is self-bounded

ℛ★
(ℬ,C) is self-bounded
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Self-bounded subspaces: Properties

Differently from V (A,ℬ, C), the set Φ(ℬ, C) is closed under intersection.

Its maximum is V★
(ℬ,C)

Its minimum is ℛ★
(ℬ,C) = V★

(ℬ,C) ∩ S★
(C,ℬ).
















ℝ
n

V★
(ℬ,C)

ℛ★
(ℬ,C)

{0}

Φ(ℬ, C)
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Self-Hidden Subspaces

Using (X + Y)⊥ = X⊥ ∩ Y⊥

(X ∩ Y)⊥ = X⊥ + Y⊥

AX ⊆ ℋ ⇔ ATℋ⊥ ⊆ X⊥

(imA)⊥ = ker AT

it is found that

V is controlled invariant for (A,B ,C ) iff V⊥ is conditioned invariant
for (AT,CT,BT);
(

max V(A, imB , ker C )
)⊥

= minS(AT, ker BT, imCT)

V ⊇ V★
ℬ,C ∩ imB =⇒ V⊥ ⊆ (V★

ℬ,C ∩ imB)⊥

=⇒ V⊥ ⊆ (V★
ℬ,C)

⊥ + (imB)⊥

=⇒ V⊥ ⊆ min S(AT, ker BT, imCT) + ker BT
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Self-Hidden Subspaces

Definition

Let S be an input-containing for (A,B ,C ) and let S★ = minS (A, C,ℬ).
Then, S is said to be self-hidden if

S ⊆ S★
(C,ℬ) + kerC

We define

Ψ(C,ℬ) = {S ∈ S (A, C,ℬ) ∣ S ⊆ S★
C,ℬ + kerC}

Exploiting duality:

S★
(C,ℬ) is self-hidden

V★
(ℬ,C) + S★

(C,ℬ) is self-hidden
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Self-hidden subspaces: Properties

Differently from S (A, C,ℬ), the set Ψ(ℬ, C) is closed under sum.

Its maximum is S★
(C,ℬ)

Its minimum is S★
(C,ℬ) + V★

(ℬ,C).
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n
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