

Stabilization and Self bounded Subspaces

Lorenzo Ntogramatzidis

Curtin University of Technology, Australia

MTNS - July 5-9, 2010

Geometric Control Theory for Linear Systems

Block 1: Foundations [10:30-12.30]:

•	<u>Talk 1</u> : Motivation and historical perspective, G. Marro	[10:30 - 11:00]
•	Talk 2: Invariant subspaces, L. Ntogramatzidis	[11:00 - 11:30]
•	Talk 3: Controlled invariance and invariant zeros, D. Prattichizzo	[11:30 - 12:00]
•	Talk 4: Conditioned invariance and state observation, F. Morbidi	[12:00 - 12:30]

Block 2: Problems and applications [15:30-17.30]:

Talk 5: Stabilization and self-bounded subspaces, L. Ntogramatzidis	[15:30 - 16:00]
<u>Talk 6</u> : Disturbance decoupling problems, L. Ntogramatzidis	[16:00 - 16:30]
■ <u>Talk 7</u> : LQR and H ₂ control problems, D. Prattichizzo	[16:30 - 17:00]
■ <u>Talk 8</u> : Spectral factorization and H ₂ -model following, F. Morbidi	[17:00 - 17:30]

æ

イロト イヨト イヨト

Stabilisation of Controlled Invariant Subspaces

- Self bounded subspaces
- Disturbance decoupling problem (DDP)

Controlled invariant and output nulling subspaces

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) & x(0) = x_0 \\ y(t) = Cx(t) \end{cases}$$

$$\mathcal{B} \stackrel{\text{\tiny def}}{=} \operatorname{im} \mathcal{B}$$
 and $\mathcal{C} \stackrel{\text{\tiny def}}{=} \ker \mathcal{C}$

Controlled invariant subspaces are loci of trajectories for Σ :

- if $x_0 \in \mathcal{V}$, we can find $u(\cdot)$ such that $x(t) \in \mathcal{V}$ for all $t \ge 0$;
- the subspace of minimal dimension containing a trajectory x(·) is controlled invariant.

Output nulling subspaces are controlled invariants contained in ker C.

•
$$\mathcal{V}_{(\mathcal{B},\mathcal{C})}^{\star}$$
 is the largest output-nulling subspace: if we want $x(\cdot)$ to yield $y = 0$, we need $x(t) \in \mathcal{V}_{(\mathcal{B},\mathcal{C})}^{\star} \quad \forall t$.

Friends

Given a controlled invariant \mathcal{V} and $x_0 \in \mathcal{V}$,

- a control u exists that maintains the state trajectory on \mathcal{V}
- such control can always be expressed as a static feedback

$$u(t) = F x(t)$$

where F is a *friend* of V, i.e., $(A + BF)V \subseteq V$:

 $\dot{x}(t) = (A + BF)x(t)$ $x(0) \in \mathcal{V} \implies x(t) \in \mathcal{V} \quad \forall t \ge 0$

A Trivial Friend

• $AV \subseteq V + B$ means

$$\exists X, U: \quad AV = VX + BU$$

where V is a basis of \mathcal{V} ;

then

$$(A+BF)V=VX$$

which means $(A + BF) \mathcal{V} \subseteq \mathcal{V}$.

We are not exploiting 2 degrees of freedom:

- in the solution of AV = VX + BU
- in the solution U = -FV

(B)

Friends

э

A B < A B </p>

< 47 ▶

Friends - Linear equations

Equation

$$MX = N$$

admits solutions if and only if $\operatorname{im} N \subseteq \operatorname{im} M$. The set of solutions is

 $\{X = M^+ N + H K \mid im H = ker M and K is arbitrary\}$

Equation

$$X M = N$$

admits solutions if and only if ker $N \supseteq \ker M$. The set of solutions is

$$\{X = N M^+ + K H \mid \ker H = \operatorname{im} M \text{ and } K \text{ is arbitrary}\}$$

イロト 不得下 イヨト イヨト 二日

Friends

• All solutions of
$$AV = VX + BU$$
 (or $AV = \begin{bmatrix} V & B \end{bmatrix} \begin{bmatrix} X \\ U \end{bmatrix}$) are

$$\begin{bmatrix} X \\ U \end{bmatrix} = \begin{bmatrix} V & B \end{bmatrix}^+ A V + H_1 K_1$$

where im $H_1 = \text{ker} \begin{bmatrix} V & B \end{bmatrix}$ and K_1 is arbitrary; The set of solutions of U = -F V is given by

$$F = -U(V^{T}V)^{-1}V^{T} + K_{2}H_{2}$$

where ker $H_2 = \mathcal{V}$ and K_2 is arbitrary.

It is easy to show that

- K_1 only affects the internal eigenvalues of $\mathcal V$
- K_2 only affects the external eigenvalues of \mathcal{V}

Friends - Internal Stabilization

3 🕨 🖌 3

Friends - Internal stabilization

Given \mathcal{V} and a basis V, the reachable subspace on \mathcal{V} is given by

 $\mathcal{R}_{\mathcal{V}} = \mathcal{V} \cap \mathcal{S}_{\mathcal{V}}^{\star}$

where $\mathcal{S}_{\mathcal{V}}^{\star}$ is given by

$$\begin{cases} S_1 = \operatorname{im} B \\ S_i = \operatorname{im} B + A(S_{i-1} \cap \mathcal{V}) & i = 2, 3, \dots \end{cases}$$

Now, we use a basis $V = \begin{bmatrix} R_V & V_c \end{bmatrix}$ for \mathcal{V} such that $\operatorname{im} R_V = \mathcal{R}_{\mathcal{V}}$. We can write $\begin{bmatrix} X \\ U \end{bmatrix} = \begin{bmatrix} V & B \end{bmatrix}^+ A V + H_1 K_1$ as

$$\begin{bmatrix} X_{11} & X_{12} \\ O & X_{22} \\ \hline U_1 & U_2 \end{bmatrix} = \begin{bmatrix} R_V & V_c & B \end{bmatrix}^+ A \begin{bmatrix} R_V & V_c \end{bmatrix} + \begin{bmatrix} H_1 \\ O \\ \hline H_3 \end{bmatrix} \begin{bmatrix} K_1' & K_1'' \end{bmatrix}$$

- 不得下 不至下 不至下 二百

Friends - Internal stabilization

Hence

$$\begin{bmatrix} X_{11} & X_{12} \\ O & X_{22} \\ \hline U_1 & U_2 \end{bmatrix} = \begin{bmatrix} \Xi_{11} & \Xi_{12} \\ O & \Xi_{22} \\ \Omega_1 & \Omega_2 \end{bmatrix} + \begin{bmatrix} H_1 \\ O \\ \hline H_2 \end{bmatrix} \begin{bmatrix} K_1' & K_1'' \end{bmatrix}$$

which means

$$\begin{bmatrix} X_{11} & X_{12} \\ O & X_{22} \\ \hline U_1 & U_2 \end{bmatrix} = \begin{bmatrix} \Xi_{11} + H_1 K_1' & \Xi_{12} + H_1 K_1'' \\ O & \Xi_{22} \\ \hline \Omega_1 + H_3 K_1' & \Omega_2 + H_3 K_1'' \end{bmatrix}$$

• (Ξ_{11}, H_1) is controllable $\implies K'_1$ can place all the spectrum of $\Xi_{11} + H_1 K'_1$.

3

A B A A B A

Friends - Internal stabilization

Assignment of internal dynamics using GA for MATLAB®:

```
>> Rv=ints(V,miinco(A,V,B));
```

- >> r=size(V,2); q=size(Rv,2);
- >> V=ima([Rv V],0);
- >> XU=pinv([V B])*A*V;
- >> H=ker([V B]);
- >> Ξ_{11} =XU(1:q,1:q);
- >> H₁=H(1:q,:);
- >> $p=[\lambda_1 \ \lambda_1 \ \dots \lambda_q]$ (λ_i arbitrary)
- >> K_1 =-place(Ξ_{11}, H_1, p);
- >> XU(:,1:q)=XU(:,1:q)+H*K₁;
- >> L=XU(r+1:r+m,:);
- >> F₁=-L*pinv(V);

Friends - External Stabilization

3 🕨 🖌 3

Friends - External stabilization

Changing coordinates of $(A + B F_1, B)$ with $T = \begin{bmatrix} T_1 & T_2 & T_3 \end{bmatrix}$ such that

• im
$$T_1 = \mathcal{V}$$

• $\begin{bmatrix} T_1 & T_2 \end{bmatrix} = \mathcal{V} + \mathcal{R}$ where $\mathcal{R} = \min J(A, \operatorname{im} B)$

leads to

$$\bar{A} = T^{-1}(A + BF_1)T = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ O & A_{22} & A_{23} \\ O & O & A_{33} \end{bmatrix}, \quad \bar{B} = T^{-1}B = \begin{bmatrix} B_1 \\ B_2 \\ O \end{bmatrix}, \quad \bar{F} = F_1T$$

• O are due to \mathcal{V} being $(A + B F_1)$ -invariant;

• *O* are due to $\mathcal{V} + \mathcal{R}$ being *A*-invariant:

 $AV \subseteq V + B, \quad AR \subseteq R, \quad R \supseteq B \implies A(V + R) \subseteq V + B + R = V + R$

• (A_{22}, B_2) is controllable.

L. Ntogramatzidis (Curtin University)

A = A = A = ØQQ

Friends - External stabilization

Assignment of external dynamics with GA. Construction of T:

```
>> R=mininv(A.B):
>> T1=V: c1=size(T1.2):
>> c=size(ima([T1,R],0),2);
>> T1T2=ima([T1,R],0);
>> if c>=c1+1, T2=T1T2(:,c1+1:c); c2=size(T2,2);
>> else T2=[]: c2=0:
>> end
>> if c<n, T3=ortco([T1 T2]);
>> if any(T3), T3=[]; end
>> c3=size(T3.2):
>> T=[T1 T2 T3];
>> else c3=0: T=[T1 T2]:
>> end
```

Assignment of external dynamics with GA. Construction of F:

- >> if c2==0,
- >> F=F1;
- >> else
- >> Ap=inv(T)*(A+B*F1)*T; Bp=inv(T)*B; Fp=F1*T;
- >> As=Ap(c1+1:c1+c2,c1+1:c1+c2);
- >> Bs=Bp(c1+1:c1+c2,:);
- >> $p=[\lambda_1 \ \lambda_1 \ \dots \lambda_{c_2}]$ (λ_i arbitrary)
- >> Fp(:,c1+1:c1+c2)=-place(As,Bs,p);
- >> F=Fp*inv(T);
- >> end

Self-bounded subspaces

Self-bounded subspaces are particular output-nulling subspaces.

$$\Sigma: \qquad \begin{cases} \dot{x}(t) = A x(t) + B u(t) \qquad x(0) = x_0 \\ y(t) = C x(t) \end{cases}$$

Let \mathcal{V} be output-nulling and a *friend* F s.t. $(A + B F)\mathcal{V} \subseteq \mathcal{V} \subseteq \ker C$. Suppose we want:

■ to "escape" V

• to remain in ker *C*, and therefore in $\mathcal{V}^{\star}_{(\mathcal{B},C)} \implies y = 0$. The set of state velocities that can keep us in ker *C* is

$$\mathcal{T}(x(t)) = (A + BF)x(t) + (\mathcal{V}^{\star}_{(\mathcal{B},\mathcal{C})} \cap \operatorname{im} B)$$

If $x_0 \in \mathcal{V}$ and $\mathcal{V} \supseteq \mathcal{V}^*_{(\mathcal{B},\mathcal{C})} \cap \operatorname{im} B$, we cannot escape \mathcal{V} , unless we leave ker C. In this case, \mathcal{V} is called **self-bounded**.

Self-bounded subspaces: Properties

Definition

Let \mathcal{V} be an output-nulling for (A, B, C) and let $\mathcal{V}^* = \max \mathcal{V}(A, \mathcal{B}, C)$. Then, \mathcal{V} is said to be self-bounded if

$$\mathcal{V} \supseteq \mathcal{V}^{\star}_{(\mathcal{B},\mathcal{C})} \cap \operatorname{im} B$$

We define

$$\Phi(\mathcal{B},\mathcal{C}) = \{ \mathcal{V} \in \mathcal{V}(\mathcal{A},\mathcal{B},\mathcal{C}) \mid \mathcal{V} \supseteq \mathcal{V}^{\star}_{\mathcal{B},\mathcal{C}} \cap \operatorname{im} \mathcal{B} \}$$

If $\mathcal{V} \in \Phi(\mathcal{B}, \mathcal{C})$, then \mathcal{V} cannot be exited by means of any trajectory on \mathcal{C} . Trivially:

•
$$\mathcal{V}^{\star}_{(\mathcal{B},\mathcal{C})}$$
 is self-bounded
• $\mathcal{R}^{\star}_{(\mathcal{B},\mathcal{C})}$ is self-bounded

Self-bounded subspaces: Properties

Differently from $\mathcal{V}(A, \mathcal{B}, \mathcal{C})$, the set $\Phi(\mathcal{B}, \mathcal{C})$ is closed under intersection.

- Its maximum is $\mathcal{V}^{\star}_{(\mathcal{B},\mathcal{C})}$
- Its minimum is $\mathcal{R}^{\star}_{(\mathcal{B},\mathcal{C})} = \mathcal{V}^{\star}_{(\mathcal{B},\mathcal{C})} \cap \mathcal{S}^{\star}_{(\mathcal{C},\mathcal{B})}$.

Self-Hidden Subspaces

Using

$$\begin{array}{rcl} (\mathcal{X} + \mathcal{Y})^{\perp} &=& \mathcal{X}^{\perp} \cap \mathcal{Y}^{\perp} \\ (\mathcal{X} \cap \mathcal{Y})^{\perp} &=& \mathcal{X}^{\perp} + \mathcal{Y}^{\perp} \\ \mathcal{A} \mathcal{X} \subseteq \mathcal{H} &\Leftrightarrow& \mathcal{A}^{\mathsf{T}} \mathcal{H}^{\perp} \subseteq \mathcal{X}^{\perp} \\ (\operatorname{im} \mathcal{A})^{\perp} &=& \operatorname{ker} \mathcal{A}^{\mathsf{T}} \end{array}$$

it is found that

V is controlled invariant for (*A*, *B*, *C*) iff *V*[⊥] is conditioned invariant for (*A*^T, *C*^T, *B*^T);

•
$$(\max \mathcal{V}(A, \operatorname{im} B, \ker C))^{\perp} = \min \mathcal{S}(A^{\mathsf{T}}, \ker B^{\mathsf{T}}, \operatorname{im} C^{\mathsf{T}})$$

$$\begin{split} \mathcal{V} &\supseteq \mathcal{V}_{\mathcal{B},\mathcal{C}}^{\star} \cap \operatorname{im} B \implies \mathcal{V}^{\perp} \subseteq (\mathcal{V}_{\mathcal{B},\mathcal{C}}^{\star} \cap \operatorname{im} B)^{\perp} \\ \implies \mathcal{V}^{\perp} \subseteq (\mathcal{V}_{\mathcal{B},\mathcal{C}}^{\star})^{\perp} + (\operatorname{im} B)^{\perp} \\ \implies \mathcal{V}^{\perp} \subseteq \min \ \mathcal{S}(\mathcal{A}^{\mathsf{T}}, \ker \ \mathcal{B}^{\mathsf{T}}, \operatorname{im} \mathcal{C}^{\mathsf{T}}) + \ker \ \mathcal{B}^{\mathsf{T}} \end{split}$$

Self-Hidden Subspaces

Definition

Let S be an input-containing for (A, B, C) and let $S^* = \min S(A, C, B)$. Then, S is said to be self-hidden if

$$\mathcal{S} \subseteq \mathcal{S}^{\star}_{(\mathcal{C},\mathcal{B})} + \ker \mathcal{C}$$

We define

$$\Psi(\mathcal{C},\mathcal{B}) = \{\mathcal{S} \in \mathcal{S}(\mathcal{A},\mathcal{C},\mathcal{B}) \mid \ \mathcal{S} \subseteq \mathcal{S}^{\star}_{\mathcal{C},\mathcal{B}} + \ker \mathcal{C}\}$$

Exploiting duality:

$$\begin{array}{l} \bullet \ \mathcal{S}^{\star}_{(\mathcal{C},\mathcal{B})} \text{ is self-hidden} \\ \bullet \ \mathcal{V}^{\star}_{(\mathcal{B},\mathcal{C})} + \mathcal{S}^{\star}_{(\mathcal{C},\mathcal{B})} \text{ is self-hidden} \end{array}$$

< 3 > < 3 >

Self-hidden subspaces: Properties

Differently from $\mathcal{S}(A, \mathcal{C}, \mathcal{B})$, the set $\Psi(\mathcal{B}, \mathcal{C})$ is closed under sum.

- Its maximum is $\mathcal{S}^{\star}_{(\mathcal{C},\mathcal{B})}$
- Its minimum is $\mathcal{S}^{\star}_{(\mathcal{C},\mathcal{B})} + \mathcal{V}^{\star}_{(\mathcal{B},\mathcal{C})}$.

