Curtin檽
 University of Technology

Stabilization and Self bounded Subspaces

Lorenzo Ntogramatzidis

Curtin University of Technology, Australia

MTNS - July 5-9, 2010

Geometric Control Theory for Linear Systems

Block 1: Foundations [10:30-12.30]:

- Talk 1: Motivation and historical perspective, G. Marro
[10:30-11:00]
- Talk 2: Invariant subspaces, L. Ntogramatzidis [11:00-11:30]
- Talk 3: Controlled invariance and invariant zeros, D. Prattichizzo
- Talk 4: Conditioned invariance and state observation, F. Morbidi
[12:00-12:30]

Block 2: Problems and applications [15:30-17.30]:

- Talk 5: Stabilization and self-bounded subspaces, L. Ntogramatzidis
[15:30-16:00]
- Talk 6: Disturbance decoupling problems, L. Ntogramatzidis
[16:00-16:30]
- Talk 7: $L Q R$ and H_{2} control problems, D. Prattichizzo [16:30-17:00]
- Talk 8: Spectral factorization and H_{2}-model following, F. Morbidi
[17:00-17:30]

Outline

■ Stabilisation of Controlled Invariant Subspaces

- Self bounded subspaces
- Disturbance decoupling problem (DDP)

Controlled invariant and output nulling subspaces

$$
\Sigma: \quad \begin{cases}\dot{x}(t)=A x(t)+B u(t) & x(0)=x_{0} \\ y(t)=C x(t) & \end{cases}
$$

$$
\mathcal{B} \xlongequal{\text { def }} \operatorname{im} B \quad \text { and } \quad \mathcal{C} \xlongequal{\text { def }} \operatorname{ker} C
$$

Controlled invariant subspaces are loci of trajectories for Σ :

- if $x_{0} \in \mathcal{V}$, we can find $u(\cdot)$ such that $x(t) \in \mathcal{V}$ for all $t \geq 0$;
- the subspace of minimal dimension containing a trajectory $x(\cdot)$ is controlled invariant.

Output nulling subspaces are controlled invariants contained in $\operatorname{ker} C$.

- $\mathcal{V}_{(\mathcal{B}, \mathcal{C})}^{\star}$ is the largest output-nulling subspace: if we want $x(\cdot)$ to yield $y=0$, we need $x(t) \in \mathcal{V}_{(\mathcal{B}, \mathcal{C})}^{\star} \forall t$.

Friends

Given a controlled invariant \mathcal{V} and $x_{0} \in \mathcal{V}$,

- a control u exists that maintains the state trajectory on \mathcal{V}

■ such control can always be expressed as a static feedback

$$
u(t)=F x(t)
$$

where F is a friend of \mathcal{V}, i.e., $(A+B F) \mathcal{V} \subseteq \mathcal{V}$:

$$
\dot{x}(t)=(A+B F) x(t) \quad x(0) \in \mathcal{V} \quad \Longrightarrow \quad x(t) \in \mathcal{V} \forall t \geq 0
$$

A Trivial Friend

■ $A \mathcal{V} \subseteq \mathcal{V}+\mathcal{B}$ means

$$
\exists X, U: \quad A V=V X+B U
$$

where V is a basis of \mathcal{V};
■ let F be such that $U=-F V$;

- then

$$
(A+B F) V=V X
$$

which means $(A+B F) \mathcal{V} \subseteq \mathcal{V}$.
We are not exploiting 2 degrees of freedom:
■ in the solution of $A V=V X+B U$
■ in the solution $U=-F V$

Friends

Friends - Linear equations

- Equation

$$
M X=N
$$

admits solutions if and only if im $N \subseteq \operatorname{im} M$. The set of solutions is

$$
\left\{X=M^{+} N+H K \mid \operatorname{im} H=\text { ker } M \text { and } K \text { is arbitrary }\right\}
$$

- Equation

$$
X M=N
$$

admits solutions if and only if ker $N \supseteq \operatorname{ker} M$. The set of solutions is

$$
\left\{X=N M^{+}+K H \mid \operatorname{ker} H=\operatorname{im} M \text { and } K \text { is arbitrary }\right\}
$$

Friends

- All solutions of $A V=V X+B U\left(\right.$ or $A V=\left[\begin{array}{ll}V & B\end{array}\right]\left[\begin{array}{l}X \\ U\end{array}\right]$) are

$$
\left[\begin{array}{l}
X \\
U
\end{array}\right]=\left[\begin{array}{ll}
V & B
\end{array}\right]^{+} A V+H_{1} K_{1}
$$

where $\operatorname{im} H_{1}=$ ker [$\left[\begin{array}{ll}V & B\end{array}\right]$ and K_{1} is arbitrary;

- The set of solutions of $U=-F V$ is given by

$$
F=-U\left(V^{\top} V\right)^{-1} V^{\top}+K_{2} H_{2}
$$

where ker $H_{2}=\mathcal{V}$ and K_{2} is arbitrary.
It is easy to show that

- K_{1} only affects the internal eigenvalues of \mathcal{V}
- K_{2} only affects the external eigenvalues of \mathcal{V}

Friends - Internal Stabilization

Friends - Internal stabilization

Given \mathcal{V} and a basis V, the reachable subspace on \mathcal{V} is given by

$$
\mathcal{R}_{\mathcal{V}}=\mathcal{V} \cap \mathcal{S}_{\mathcal{V}}^{\star}
$$

where $\mathcal{S}_{\mathcal{V}}^{\star}$ is given by

$$
\left\{\begin{array}{l}
\mathcal{S}_{1}=\operatorname{im} B \\
\mathcal{S}_{i}=\operatorname{im} B+A\left(\mathcal{S}_{i-1} \cap \mathcal{V}\right) \quad i=2,3, \ldots
\end{array}\right.
$$

Now, we use a basis $V=\left[\begin{array}{ll}R_{V} & V_{c}\end{array}\right]$ for \mathcal{V} such that $\operatorname{im} R_{V}=\mathcal{R}_{\mathcal{V}}$.
We can write $\left[\begin{array}{l}X \\ U\end{array}\right]=\left[\begin{array}{ll}V & B\end{array}\right]^{+} A V+H_{1} K_{1}$ as
$\left[\begin{array}{cc}X_{11} & X_{12} \\ O & X_{22} \\ \hline U_{1} & U_{2}\end{array}\right]=\left[\begin{array}{lll}R_{V} & V_{c} & B\end{array}\right]^{+} A\left[\begin{array}{ll}R_{V} & V_{c}\end{array}\right]+\left[\begin{array}{c}H_{1} \\ O \\ \hline H_{3}\end{array}\right]\left[\begin{array}{ll}K_{1}^{\prime} & K_{1}^{\prime \prime}\end{array}\right]$

Friends - Internal stabilization

Hence

$$
\left[\begin{array}{cc}
X_{11} & X_{12} \\
O & X_{22} \\
\hline U_{1} & U_{2}
\end{array}\right]=\left[\begin{array}{cc}
\Xi_{11} & \bar{\Xi}_{12} \\
O & \bar{\Xi}_{22} \\
\Omega_{1} & \Omega_{2}
\end{array}\right]+\left[\begin{array}{c}
H_{1} \\
O \\
\hline H_{2}
\end{array}\right]\left[\begin{array}{ll}
K_{1}^{\prime} & K_{1}^{\prime \prime}
\end{array}\right]
$$

which means

$$
\left[\begin{array}{cc}
X_{11} & X_{12} \\
O & X_{22} \\
\hline U_{1} & U_{2}
\end{array}\right]=\left[\begin{array}{cc}
\Xi_{11}+H_{1} K_{1}^{\prime} & \Xi_{12}+H_{1} K_{1}^{\prime \prime} \\
O & \Xi_{22} \\
\hline \Omega_{1}+H_{3} K_{1}^{\prime} & \Omega_{2}+H_{3} K_{1}^{\prime \prime}
\end{array}\right]
$$

■ $\left(\Xi_{11}, H_{1}\right)$ is controllable $\Longrightarrow K_{1}^{\prime}$ can place all the spectrum of $\bar{\Xi}_{11}+H_{1} K_{1}^{\prime}$.

Friends - Internal stabilization

Assignment of internal dynamics using GA for MATLAB ${ }^{\circledR}$:
>> Rv=ints(V,miinco(A,V,B));
>> r=size (V,2); q=size (Rv,2);
>> V=ima([Rv V],0);
$\gg \mathrm{XU}=\mathrm{pinv}\left(\left[\begin{array}{ll}\mathrm{V} & \mathrm{B}\end{array}\right]\right) * \mathrm{~A} * \mathrm{~V}$;
>> $H=\operatorname{ker}\left(\left[\begin{array}{ll}\mathrm{V} & \mathrm{B}\end{array}\right]\right)$;
$\gg \overline{1}_{11}=X U(1: q, 1: q)$;
$>H_{1}=H(1: q,:)$;
$>p=\left[\begin{array}{llll}\lambda_{1} & \lambda_{1} & \ldots & \lambda_{q}\end{array}\right] \quad$ (λ_{i} arbitrary)
$>K_{1}=-\mathrm{place}\left(\bar{\Xi}_{11}, H_{1}, \mathrm{p}\right)$;
$\gg \operatorname{XU}(:, 1: q)=X U(:, 1: q)+H * K_{1} ;$
>> L=XU(r+1:r+m,:);
$\gg F_{1}=-L * \operatorname{pinv}(\mathrm{~V})$;

Friends - External Stabilization

Friends - External stabilization

Changing coordinates of $\left(A+B F_{1}, B\right)$ with $T=\left[\begin{array}{lll}T_{1} & T_{2} & T_{3}\end{array}\right]$ such that

- im $T_{1}=\mathcal{V}$
- [$\left.\begin{array}{ll}T_{1} & T_{2}\end{array}\right]=\mathcal{V}+\mathcal{R}$ where $\mathcal{R}=\min J(A, \operatorname{im} B)$
leads to
$\bar{A}=T^{-1}\left(A+B F_{1}\right) T=\left[\begin{array}{ccc}A_{11} & A_{12} & A_{13} \\ O & A_{22} & A_{23} \\ O & O & A_{33}\end{array}\right], \quad \bar{B}=T^{-1} B=\left[\begin{array}{c}B_{1} \\ B_{2} \\ O\end{array}\right], \quad \bar{F}=F_{1} T$
- O are due to \mathcal{V} being $\left(A+B F_{1}\right)$-invariant;
- O are due to $\mathcal{V}+\mathcal{R}$ being A-invariant:
$A \mathcal{V} \subseteq \mathcal{V}+\mathcal{B}, \quad A \mathcal{R} \subseteq \mathcal{R}, \quad \mathcal{R} \supseteq \mathcal{B} \Longrightarrow A(\mathcal{V}+\mathcal{R}) \subseteq \mathcal{V}+\mathcal{B}+\mathcal{R}=\mathcal{V}+\mathcal{R}$
- $\left(A_{22}, B_{2}\right)$ is controllable.

Friends - External stabilization

Assignment of external dynamics with GA. Construction of T :

```
>> R=mininv(A,B);
>> T1=V; c1=size(T1,2);
>> c=size(ima([T1,R],0),2);
>> T1T2=ima([T1,R],0);
>> if c>=c1+1, T2=T1T2(:,c1+1:c); c2=size(T2,2);
>> else T2=[]; c2=0;
>> end
>> if c<n, T3=ortco([T1 T2]);
>> if any(T3), T3=[]; end
>> c3=size(T3,2);
>> T=[T1 T2 T3];
>> else c3=0; T=[T1 T2];
>> end
```


Friends - External stabilization

Assignment of external dynamics with GA. Construction of F :

```
>> if \(c 2==0\),
>> \(\mathrm{F}=\mathrm{F} 1\);
>> else
\(\gg \quad \mathrm{Ap}=\operatorname{inv}(\mathrm{T}) *(\mathrm{~A}+\mathrm{B} * \mathrm{~F} 1) * \mathrm{~T} ; \mathrm{Bp}=\operatorname{inv}(\mathrm{T}) * \mathrm{~B} ; \mathrm{Fp}=\mathrm{F} 1 * \mathrm{~T} ;\)
\(\gg \quad A s=A p(c 1+1: c 1+c 2, c 1+1: c 1+c 2)\);
\(\gg \quad B s=B p(c 1+1: c 1+c 2,:)\);
\(\gg \quad \mathrm{p}=\left[\begin{array}{llll}\lambda_{1} & \lambda_{1} & \ldots & \lambda_{c_{2}}\end{array}\right] \quad\) ( \(\lambda_{i}\) arbitrary)
>> \(\mathrm{Fp}(:, \mathrm{c} 1+1: \mathrm{c} 1+\mathrm{c} 2)=-\mathrm{place}(\mathrm{As}, \mathrm{Bs}, \mathrm{p})\);
>> \(\mathrm{F}=\mathrm{Fp} * \operatorname{inv}(\mathrm{~T})\);
>> end
```


Self-bounded subspaces

Self-bounded subspaces are particular output-nulling subspaces.

$$
\Sigma: \quad \begin{cases}\dot{x}(t)=A x(t)+B u(t) & x(0)=x_{0} \\ y(t)=C x(t) & \end{cases}
$$

Let \mathcal{V} be output-nulling and a friend F s.t. $(A+B F) \mathcal{V} \subseteq \mathcal{V} \subseteq \operatorname{ker} C$. Suppose we want:

- to "escape" \mathcal{V}
- to remain in $\operatorname{ker} C$, and therefore in $\mathcal{V}_{(\mathcal{B}, \mathcal{C})}^{\star} \Longrightarrow y=0$.

The set of state velocities that can keep us in $\operatorname{ker} C$ is

$$
\mathcal{T}(x(t))=(A+B F) x(t)+\left(\mathcal{V}_{(\mathcal{B}, \mathcal{C})}^{\star} \cap \operatorname{im} B\right)
$$

If $x_{0} \in \mathcal{V}$ and $\mathcal{V} \supseteq \mathcal{V}_{(\mathcal{B}, \mathcal{C})}^{\star} \cap \operatorname{im} B$, we cannot escape \mathcal{V}, unless we leave $\operatorname{ker} C$. In this case, \mathcal{V} is called self-bounded.

Self-bounded subspaces: Properties

Definition

Let \mathcal{V} be an output-nulling for (A, B, C) and let $\mathcal{V}^{\star}=\max \mathcal{V}(A, \mathcal{B}, \mathcal{C})$.
Then, \mathcal{V} is said to be self-bounded if

$$
\mathcal{V} \supseteq \mathcal{V}_{(\mathcal{B}, \mathcal{C})}^{\star} \cap \operatorname{im} B
$$

We define

$$
\Phi(\mathcal{B}, \mathcal{C})=\left\{\mathcal{V} \in \mathcal{V}(A, \mathcal{B}, \mathcal{C}) \mid \mathcal{V} \supseteq \mathcal{V}_{\mathcal{B}, \mathcal{C}}^{\star} \cap \operatorname{im} B\right\}
$$

If $\mathcal{V} \in \Phi(\mathcal{B}, \mathcal{C})$, then \mathcal{V} cannot be exited by means of any trajectory on \mathcal{C}. Trivially:

- $\mathcal{V}_{(\mathcal{B}, \mathcal{C})}^{\star}$ is self-bounded
- $\mathcal{R}_{(\mathcal{B}, \mathcal{C})}^{\star}$ is self-bounded

Self-bounded subspaces: Properties

Differently from $\mathcal{V}(A, \mathcal{B}, \mathcal{C})$, the set $\Phi(\mathcal{B}, \mathcal{C})$ is closed under intersection.

- Its maximum is $\mathcal{V}_{(\mathcal{B}, \mathcal{C})}^{\star}$
\square Its minimum is $\mathcal{R}_{(\mathcal{B}, \mathcal{C})}^{\star}=\mathcal{V}_{(\mathcal{B}, \mathcal{C})}^{\star} \cap \mathcal{S}_{(\mathcal{C}, \mathcal{B})}^{\star}$.

Self-Hidden Subspaces

Using

$$
\begin{aligned}
(\mathcal{X}+\mathcal{Y})^{\perp} & =\mathcal{X}^{\perp} \cap \mathcal{Y}^{\perp} \\
(\mathcal{X} \cap \mathcal{Y})^{\perp} & =\mathcal{X}^{\perp}+\mathcal{Y}^{\perp} \\
A \mathcal{X} \subseteq \mathcal{H} & \Leftrightarrow A^{\top} \mathcal{H}^{\perp} \subseteq \mathcal{X}^{\perp} \\
(\operatorname{im} A)^{\perp} & =\operatorname{ker} A^{\top}
\end{aligned}
$$

it is found that
■ \mathcal{V} is controlled invariant for (A, B, C) iff \mathcal{V}^{\perp} is conditioned invariant for $\left(A^{\top}, C^{\top}, B^{\top}\right)$;
■ $(\max \mathcal{V}(A, \operatorname{im} B, \operatorname{ker} C))^{\perp}=\min \mathcal{S}\left(A^{\top}, \operatorname{ker} B^{\top}, \operatorname{im} C^{\top}\right)$

$$
\begin{aligned}
& \mathcal{V} \supseteq \mathcal{V}_{\mathcal{B}, \mathcal{C}}^{\star} \cap \operatorname{im} B \Longrightarrow \mathcal{V}^{\perp} \subseteq\left(\mathcal{V}_{\mathcal{B}, \mathcal{C}}^{\star} \cap \operatorname{im} B\right)^{\perp} \\
& \Longrightarrow \mathcal{V}^{\perp} \subseteq\left(\mathcal{V}_{\mathcal{B}, \mathcal{C}}^{\star}\right)^{\perp}+(\operatorname{im} B)^{\perp} \\
& \Longrightarrow \mathcal{V}^{\perp} \subseteq \min S\left(A^{\top}, \operatorname{ker} B^{\top}, \operatorname{im} C^{\top}\right)+\operatorname{ker} B^{\top}
\end{aligned}
$$

Self-Hidden Subspaces

Definition

Let \mathcal{S} be an input-containing for (A, B, C) and let $\mathcal{S}^{\star}=\min \mathcal{S}(A, \mathcal{C}, \mathcal{B})$. Then, \mathcal{S} is said to be self-hidden if

$$
\mathcal{S} \subseteq \mathcal{S}_{(\mathcal{C}, \mathcal{B})}^{\star}+\operatorname{ker} C
$$

We define

$$
\Psi(\mathcal{C}, \mathcal{B})=\left\{\mathcal{S} \in \mathcal{S}(A, \mathcal{C}, \mathcal{B}) \mid \mathcal{S} \subseteq \mathcal{S}_{\mathcal{C}, \mathcal{B}}^{\star}+\operatorname{ker} C\right\}
$$

Exploiting duality:

- $\mathcal{S}_{(\mathcal{C}, \mathcal{B})}^{\star}$ is self-hidden
- $\mathcal{V}_{(\mathcal{B}, \mathcal{C})}^{\star}+\mathcal{S}_{(\mathcal{C}, \mathcal{B})}^{\star}$ is self-hidden

Self-hidden subspaces: Properties

Differently from $\mathcal{S}(A, \mathcal{C}, \mathcal{B})$, the set $\Psi(\mathcal{B}, \mathcal{C})$ is closed under sum.

- Its maximum is $\mathcal{S}_{(\mathcal{C}, \mathcal{B})}^{\star}$
- Its minimum is $\mathcal{S}_{(\mathcal{C}, \mathcal{B})}^{\star}+\mathcal{V}_{(\mathcal{B}, \mathcal{C})}^{\star}$.

