
On theH 2 Two-Side Model Matching Problem with Preview

Maxim Kristalny and Leonid Mirkin

Abstract— The H
2 optimization problem with preview and

asymptotic behavior constraints is considered in a general two-
side model matching setting. The solution is obtained in terms of
two constrained Sylvester equations, associated with asymptotic
behavior, and stabilizing solutions of two algebraic Riccati equa-
tions. The Riccati equations do not depend on the preview length,
yet are affected by asymptotic behavior constraints and are
thus different from the standard H

2 Riccati equations arising
in problems with no steady-state requirements or in one-side
problems.

I. I NTRODUCTION AND PROBLEM FORMULATION

Numerous estimation and control problems fall into the
category of problems with information preview. For example,
in many communication and signal processing applications,
certain delay between estimation generation and estimated
signal is tolerable. In such problems the allowed delay may
be interpreted as availability of future measurements within
a constant preview window. Also in some tracking and dis-
turbance attenuation problems, e.g., those arising in robotics
or active suspension control, preview of command and/or
disturbance signals may be available to a controller. Clearly,
availability of preview can potentially improve the perfor-
mance of the controller or the estimator. In this work, the
question of how to exploit this potential will be addressed in
the framework of a generalH 2 model matching optimization.

Both estimation and open-loop control problems with in-
formation preview can be cast as a unified setting referred
to as model matching with preview. Moreover, many closed-
loop control problems with preview can be also reduced to
this setting using the Youla-Kucera parameterization [6], [20].
Two different representations of model matching with preview
are depicted in Fig. 1. In these block diagrams,G1, G2 and
G3 represent some given causal LTI systems, containing the
problem data and (possibly unstable) weights. The design
parameterK represents an estimator / controller / Youla pa-
rameter. The block diagram depicted in Fig. 1(a) is natural in
control applications, where the reference and/or the measure-
ments of the disturbance signals are available to the controller
in advance. The block diagram in Fig. 1(b) is relevant for
estimation problems, where preview is available due to the
latency allowed in estimation generation. It is readily seen
that these two settings are equivalent up to a shift of the time
axes. For the sake of convenience and without loss of the
generality, in this work we will adopt the setting depicted on
Fig. 1(b), where the availability of preview is reflected by the
causal delay element e�sh. In particular, the causality of the
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Fig. 1. Model matching with preview

overall system in this case renders its stability equivalent to
the conditionT 2 H 1.

The one-side version of model matching with preview, i.e.,
the setting with eitherG2 D I or G3 D I is currently
well studied in bothH 2 and H 1 settings, [11]–[13]. Yet,
many problems of interest, such as measured disturbance
attenuation, etc., have an intrinsic two-side structure. This mo-
tivates our study of the general two-side model matching with
preview, which, to the best of our knowledge, has not been
addressed in the literature yet. In this work we focus on the
H 2 optimization problem, which accounts for both transient
and asymptotic behavior of the underlying control/estimation
system and can be formulated as follows.
OP: Given proper rational transfer matricesG1, G2, G3 and a

constanth � 0, find K 2 H 1, which guarantees

T D e�shG1 � G3KG2 2 H 2 \ H 1 (1)

and minimizeskT k2.
The one-side version of this problem withG3 D I will
hereafter be referred to as one-side problem and will be
denoted byOPo.

The following remarks may be useful for understanding and
interpreting the problems formulated above.

1) The transfer matricesG1, G2 andG3 may not belong
to H 1 due to unstable weights, used for description
of the underlying control/estimation system. In this
context, the stability constraintT 2 H 1 in (1) accounts
for asymptotic behavior of the system subject to non-
decaying input signals, modeled by the weights insta-
bilities. More details on casting asymptotic behavior
requirements as input-output stabilization problem can
be found in [3], [5].
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2) The optimization criterion,kT k2, accounts for transient
behavior of the underlying system.

3) In the case when the considered model matching setting
originates from an open-loop control or an estimation
problem, the design parameterK has to be stable and
causal in order to guarantee implementability of the
resulting solution. In this context, as well as in case
whenK represents a Youla parameter, the requirement
K 2 H 1 is natural.

4) The constanth represents the length of preview avail-
able in the problem. One way to verify this is by noting
that multiplication ofT by esh does not change itsL2

norm and, as a result, the optimization criterion can be
rewritten as

kT k2 D keshT k2 D kG1 � G3KeshG2k2:

Thus, shifting the time axes, the presence of the delay
element in (1) can be interpreted as the presence of a
preview in the input ofK. At this point, we can redefine
the design parameter asQK WD Kesh 2 eshH 1 and
rewrite the optimization criteria askG1 � G3

QKG2k2. In
this representation, the increase ofh can be interpreted
as the relaxation of the causality requirement onQK

and infinite preview length corresponds to the problem
without causality constraints on the design parameter.

Studies ofH 2 problems related toOP in the context of
preview control go back to the ’60s, [1], [17], [18]. In esti-
mation framework, the interest to problems with information
preview, referred to as smoothing, can be traced even to earlier
decades [19]. In the late ’80s and mid ’90s, several results in
the discrete-time setting were published, see [14], [15], and
over the past few years the area of continuous-time preview
control gained a renewed interest. The two-blockH 2 preview
tracking was addressed in the 2DOF setting in [10], [16] and
later on as a feedforward tracking in [2], [9], [13]. In [13]
also the multiple preview case was addressed. The problems
considered in the references above, however, correspond to
the one-side setting with no stability constraints. A problem
with stability constraints was considered in the context of
H 1 optimization in [11], [12]. Yet, also in these works the
discussion and, as a result, the stabilization procedure are
restricted to the one-side case. A very general stabilization
problem corresponding to two-side setting was considered in
[7], where a complete but rather complicate parameterization
of all stabilizing solutions was derived in terms of three
independent parameters. This result was exploited in [8] to
solve general finite-dimensionalH 2 optimization problem
with stability constraints. The solution method proposed in
this work, however, is not readily extendible to the problem
with information preview.

Solution of the one-side problem,OPo, can be derived
by combining stabilization procedure from [11], [12] and
classicalL2 optimization arguments. Yet, the extension of this
method to the general two-side setting is by no means trivial
and constitutes the main challenge of the current work. The
difficulties arise already in the stabilization stage, where the
general problem exhibits a more complicate nature then its

one-side counterpart. Recently, it was shown, see [3], [5], that
under mild simplifying assumptions, all stabilizing solutions
of the general model matching problem can be characterized
by an affine parameterizations in terms of a single stable
but otherwise arbitrary parameter. This result turns out to be
highly relevant in the context ofOP and serves as a starting
point for the current study.

In this work we reconsider the stabilization procedure from
[3], [5] and rewrite the parameterization of all stabilizing solu-
tions in a form, suitable for the treatment of the optimization
problem. This enables us to extend the existing methods of
the solution of the one-side problem to the two-side setting.
We end up with an explicit and numerically efficient solution,
which provides insight into the structure of the resulting
controller/estimator. The solution is given in terms of two
matrix Sylvester equations, associated with stabilization, and
two algebraic Riccati equations. The latter equations differ
from the standardH 2 Riccati equations by a shift ofA-
matrices, which relies on solutions of the aforementioned
Sylvester equations.

We will considerOP under the following set of assump-
tions:

A1: G1.1/ D 0,

A2: G2.1/ and G3.1/ have full row and column rank
respectively,

A3: .Z2 [ Z3/ \ jR D ;,

A4: .P2 [ P3/ \ C
C 2 jR,

whereZ2=3 andP2=3 refer to sets of all zeros and poles ofG2=3

respectively. The first assumption is technical and imposes no
loss of the generality. Indeed,OP is solvable only if there
existsK that rendersT 2 H 2 and, in particular, guarantees
thatT .1/ D 0. This, in turn, is possible only if there exists a
matrix Dk such thatG1.1/ � G3.1/DkG2.1/ D 0. In this
case, the design parameter can be shifted asQK D K � e�shDk

to yield a problem in whichA1 is satisfied. The assumptions
A2 andA3 are standard and rule out problem redundancy and
singularity. The fourth assumption is practically not restric-
tive, since, typically, unstable poles present inOP originate
from unstable weights with imaginary axis instabilities. This
assumption rules out possibility of the coincidence between
unstable poles and zeros ofG2=3 and facilitates the stabiliza-
tion procedure, see [3], [5] for more details.

The paper is organized as follows. In Section II the ratio-
nale behind the proposed solution is described in frequency
domain. In Section III explicit formulae ofOP solution are
derived using the state-space machinery. Finally, some con-
cluding remarks are available in Section IV.

Notation: The open left and right halves of the complex
plain are denoted byC� andC

C respectively. For any left-
invertible A 2 R

n�m, the matricesAC 2 R
m�n and A? 2

R
n�m�n denote a pseudo inverse ofA and its complement

satisfying

�

AC

A?

�

A D

�

I

0

�

; det
�

AC

A?

�

¤ 0:
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Similarly, if A is right-invertible, AC 2 R
m�n and A? 2

R
m�m�n satisfy

A
�

AC A?
�

D
�

I 0
�

; det
�

AC A?
�

¤ 0:

Given a transfer matrixG.s/, its pseudo inverse is denoted by
G# and its conjugate is denotesG�.s/ and defined asG�.s/ D

ŒG.�s/�0. For G 2 L2, .G/C refers to the projection ofG on
H 2

?. For any rational strictly proper transfer function given by
its minimal state-space realizationG.s/ D C.sI �A/�1B, the
completion operator constitutes an FIR linear system and is
defined as

�hfG.s/g D

�

A B

Ce�Ah 0

�

� e�sh

�

A B

C 0

�

:

More details on this definition can be found in [11]. The left
and the right coprime factorizations are abbreviated as lcf and
rcf, respectively. Doubly coprime factorizations for each of
the transfer matrices involved inOP are denoted by

Gi D Ni M
�1
i D QM �1

i
QNi ; (2a)

�

Xi Yi

� QNi
QMi

� �

Mi � QYi

Ni
QXi

�

D

�

I 0

0 I

�

; (2b)

for i D 1; 2; 3. The sets of all poles and zeros ofGi .s/ are
denoted byPi andZi , respectively. The notion ofbilateral
Diophantine equation (BDE) on rational matrices refers to the
equation of the formMX C YN D P; whereM; N; P 2 H 1

are given andX; Y 2 H 1 are to be found.

II. FREQUENCY DOMAIN SOLUTION

In this section a frequency domain solution ofOP is de-
rived. The results presented here are not readily computable,
the aim of this section is to explain the main steps of the
solution, which later on will be implemented using the state-
space techniques to get the final result.

Our first step will be to resolve the stability constraint im-
posed onT and to reduce the problem to theL2 optimization.
In the one-side case, this can be done using the parameter-
ization of all stabilizing solutions available from [11], [12].
Although the two-side stabilization problem is of a more
complicate nature, it turns out, [3], [5], that under assumptions
A4, A3 similar—in terms of its structure—parameterization
exists also in two-side case. The following result can be
formulated.

Lemma 1: Let A2-4 hold. Then there existsK 2 H 1 that
stabilize (1) iff QM3G1M2 2 H 1 and there existU2, V2, U3,
andV3 in H 1 that satisfy the following BDE’s:

N3U2 C V2
QM2 D QX3

QM3G1M2Y2; (3)

U3
QN2 C M3V3 D QY3

QM3G1M2X2: (4)

If these conditions are satisfied, then allK 2 H 1 that
stabilize (1) and all the corresponding stabilizedT ’s can be
characterized as

K D e�sh NK1 C NK3Q NK2; (5)

T D e�sh NG1 � NG3Q NG2; (6)

where
�

NK1
NK3

NK2

�

´

�

QY3
QM3G1M2Y2 C M3U2 C U3

QM2 M3

QM2

�

;

�

NG1
NG3

NG2

�

´

�

QX3
QM3G1M2X2 C V2

QN2 C N3V3 N3

QN2

�

;

andQ 2 H 1 but otherwise arbitrary.
Proof: Using the finite-dimensional result of [5], it can

be shown that anyK given by (5) stabilizes the problem
and that the corresponding stabilizedT is given by (6). The
only thing left is to show completeness this parameterization.
To this end, using completion operator, we may rewrite the
expression forT as follows

T D ��hfG1g C QG1 � G3KG2;

where QG1 is finite dimensional and the first term is a stable
FIR system, which does not affect the stabilization. This
reduces the original stabilization problem to a similar but
finite-dimensional one, which was considered in [5]. The
proof can be completed now by noting that, according to [5],
affine parameterization of a form (5) is complete for any
finite-dimensional two-side problem that satisfiesA2-4.

Following the ideas from [12], we will assume without
loss of the generality thatNG1, NG2 and NG3 involved in the
parameterization of all stableT ’s in (6) satisfy

NG2
NG�

2 D I; NG�
3

NG3 D I; NG�
3

NG1
NG�

2 2 H 2
?: (7)

It will be shown in the next section that such parameterization
can alway be constructed. The properties in (7) facilitate the
derivation of compact formulae for the frequency domain
solution and greatly simplify state-space derivations in the
next section.

The result of Lemma 1 involves bilateral Diophantine equa-
tions1, which renders it more complicated then its one-side
counterpart from [11], [12]. Still, similarly to the one-side
case, it yields an affine parameterization of all stabilizing
solutions given in terms of single parameter. As a result,
reformulatingOP in terms of a new parameterQ, we can
resolve stability constraints without changing the structure of
the optimization criteria. Namely, we can reduce the problem
to finding Q 2 H 1 that minimizes theL2 norm of the
expression given in (6). Note that under assumptionsA2 and
A3 there existNG#

2 , NG#
3 2 L1. Post- and pre-multiplying (6) by

these transfer functions yields

Q D e�sh NG#
3

NG1
NG#

2 � NG#
3T NG#

2 ;

showing thatT 2 L2 only if Q 2 L2 and implying that
the domain of the optimization parameter can be effectively
replaced byQ 2 H 2.

Thus,OP reduces to theL2 optimization

Qopt D argmin
Q2H 2

ke�sh NG1 � NG3Q NG2k2; (8)

which can be solved using the standard Hilbert space argu-
ments. A geometric interpretation of this problem is presented
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NG1

NG3Qopt NG2

NG3Q NG2

Fig. 2. Geometric interpretation of (8)

in Fig. 2. By the Projection Theorem, the optimal solution can
be characterized by the orthogonality of the optimal error to
the subspace generated byNG3Q NG2, i.e., by

he�sh NG1 � NG3Qopt NG2; NG3Q NG2i2 D 0; 8Q 2 H 2:

Because the transfer function of the adjoint operator is the
conjugate transfer function, the condition above reads

h NG�
3 .e�sh NG1 � NG3Qopt NG2/ NG�

2 ; Qi2 D 0; 8Q 2 H 2:

Using (7), we then obtain that the optimalQ must satisfy

e�sh NG�
3

NG1
NG�

2 � Qopt 2 H 2
?;

which, in turn, yields

Qopt D
�

e�sh NG�
3

NG1
NG�

2

�

C
: (9)

The expression for the minimal norm of the error can be given
by

kT optk2
2 D k NG1k2

2 � k NG3Qopt NG2k2
2 D k NG1k2

2 � kQoptk2
2;

where we made use of the facts thatNG2 and NG3 are co-inner
and inner, respectively (cf. (7)).

Going back to the original problem, i.e., substituting (9)
into the parameterizations from Lemma 1, yields the main
result of the current section.

Theorem 1: Let the conditions of Lemma 1 hold and as-
sume that parameterizations (5) and (6), are constructed to
satisfy (7). Then,OP is solvable and the optimalK with the
corresponding minimalkT k2 are given by

Kopt D e�sh NK1 C NK3.e�sh NG�
3

NG1
NG�

2 /C
NK2; (10)

kT optk2
2 D k NG1k2

2 � k
�

e�sh NG�
3

NG1
NG�

2

�

C
k2

2: (11)

Note that, according to (7), the systemNG�
3

NG1
NG�

2 is anti-
causal. Therefore,FFIR ´ .e�sh NG�

3
NG1

NG�
2 /C is an FIR system

of the form
FFIR D �hf NG�

3
NG1

NG�
2 g:

The structure of the optimal solution is presented in Fig. 3 and
has a clear interpretation. The presence of the delay element
implies that the upper branch of the diagram does not make
use of the information preview and acts as if no preview was
available in the problem. The systemNK1 does not depend on
the preview lengthh and coincides with the optimal solution
of the problem without preview. On the other hand, the lower
branch of the diagram, based on the FIR block, accounts for
the existence of preview and makes the difference between the
solutions ofOP and the standard preview-free optimization.

1See [3], [4] to find more details on the bilateral Diophantine equation over
RH1 and its relation to stabilization problem.

�

NK1

NK2
NK3

e�sh

FFIR

Fig. 3. Optimal solution structure

III. STATE-SPACE SOLUTION

Having described the main steps of the solution in the
frequency domain, we aim at implementing them using state-
space techniques in order to derive computable formulae for
the optimal solution and for the achievable performance.

A. The one-side problem

As a preliminary step before considering the general two-
side problem, let us focus on its one-side version,OPo, with

T D e�shG1 � KG2: (12)

In this case we can chooseQM3, QN3, M3, and QY3 as identity
matrices andQX3 D 0. This renders BDE’s (3) and (4) trivial,
with possible solutions

U2 D 0; V2 D 0; U3 D 0; and V3 D G1M2X2:

This simplifies the solutionOPoconsiderably.
Consider the following composite system, given by its

minimal state-space realization

G ´

�

G1

G2

�

D

2

4

A B

C1 0

C2 D2

3

5 : (13)

To simplify the exposition, assume hereafter that

A5: D2D0
2 D I ,

which is a matter of scaling and can thus be assumed without
loss of the generality providedA2 holds true. Following
the solution line described in Section II, our first step is to
reduce the problem to theL2 optimization. The result below
is essentially from [11], [12].

Lemma 2: Let G be given by its minimal state-space real-
ization (13). Then there existsK 2 H 1 stabilizing (12) iff
.A; C2/ is detectable. If this condition holds andL is chosen
so thatA C LC2 is Hurwitz, then allK 2 H 1 stabilizing (12)
and all the corresponding stabilizedT ’s can be characterized
by (5) and (6) respectively, whereNK3 D I , NG3 D I ,

�

NK1

NK2

�

D

2

4

AL L

�C1 0

C2 I

3

5 ; (14)

NG ´

�

NG1

NG2

�

D

2

4

AL B C LD2

C1 0

C2 D2

3

5 ; (15)

andAL D A C LC2 andQ 2 H 1 but otherwise arbitrary.
The lemma above yields a state-space representation of

the one-side version of Lemma 1, which enables one to
replace the original model-matching setup with a stabilized
one, associated withNG1 and NG2. It is worth mentioning that the
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order of the state-space realization (15), which correspondsto
the stabilized model-matching setup, equals to the order of the
original systemG in (13). This shows that the stability con-
straints ofOPocan be resolved without increasing complexity
of the problem.

The systemsNK1, NK2, NG1 and NG2, given in (14), (15), are not
unique due to the freedom in the choice ofL. This freedom
can be exploited to get parameterizations that satisfy (7). To
this end, choose

L D �YC 0
2 � BD0

2; (16)

where Y � 0 is the stabilizing solution of the following
algebraic Riccati equation (ARE):

AY C YA0 � .YC 0
2 C BD0

2/.C2Y C D2B 0/ C BB 0 D 0: (17)

The existence of a unique stabilizing solution of this equation
for any stabilizable problem is guaranteed byA3 and the
detectability of.A; C2/, see [21]. It can now be verified by
straightforward calculations that in this case (7) hold and

NG1
NG�

2 D

�

�A0
L C 0

2

�C1Y 0

�

: (18)

Substituting (14) and (18) into (10) and (11) leads to the
following explicit solution ofOPo:

Theorem 2: Let G be given by its minimal state-space
realization (13). ThenOPois solvable iff.A; C2/ is detectable.
In this case, the optimalK and the corresponding minimal
kT k2

2 are given by

Kopt D e�sh

�

AL L

�C1 0

�

� �h

��

�A0
L C 0

2

�C1Y 0

�� �

AL L

C2 I

�

and

kT optk2
2 D













�

AL B C LD2

C1 0

�












2

2

�













�h

��

�A0
L C 0

2

�C1Y 0

��












2

2

;

whereY is the stabilizing solution of ARE (17) andL is as
defined by (16).

It is worth mentioning that the solution in Theorem 2 is
based on a standardH 2 algebraic Riccati equation, see [21,
÷14.5]. In the next subsection we shall see that this is no longer
true for the solution of the two-side problem.

B. The two-side problem

We are in the position to extend the state-space solution of
the one-side problem from the previous subsection to the two-
side setting. To this end, consider the following composite
system, which is a two-side counterpart of (13) and is given
by its minimal state-space realization

G D

�

G1 G3

G2 0

�

D

2

4

A B1 B3

C1 0 D3

C2 D2 0

3

5 : (19)

In addition to the assumptionA5 we will assume hereafter
that

A6: D0
3D3 D I .

Note that, similarly toA5, this assumption does not imply any
loss of generality.

Since the two-side solution is more complicated then its
one-side counterpart and involves nontrivial BDE’s, (3), (4), a
more detailed state-space structure of (19) is required to carry
out the derivations. Bringing in the canonical decomposition
of the “A” matrix of (19) with respect to the second input and
the second output leads to the following form:

G D

2

6

6

6

6

4

A3 A12 A13 B11 B12

0 A1i A23 B21 0

0 0 A2 B31 0

C11 C12 C13 0 D3

0 0 C23 D2 0

3

7

7

7

7

5

; (20)

where the pair.A3; B12/ is controllable and the pair.A2; C23/

is observable. Without loss of generality, we may assume that
the realization above has an additional structure:

A2 D

�

A2s 0

0 A2u

�

; A3 D

�

A3u 0

0 A3s

�

; (21)

A12 D

�

0

�

�

; A13 D

�

0 �

� 0

�

; A23 D

�

�

0

�0

; (22)

whereA2s andA3s are Hurwitz,A2u andA3u are anti-stable,
and “�” stand for irrelevant blocks. Define matricesE2 and
E3 through the equalities

A2E2 D E2A2u and E 0
3A3 D A3uE 0

3

and pick anyFs andLs such thatA3 C B12FsE
0
3 andA2 C

E2L2C23 are Hurwitz.
To derive the state-space form of Lemma 1, introduce the

following pair of constrained Sylvester equations:

A3uZ2�Z2.A2�B31D0
2C23/ D E3.A13�B11DC

2 C23/; (23a)
�

E 0
3B11 C Z2B31

�

D?
2 D 0; (23b)

and

Z3A2u � .A3 � B12DC
3 C11/Z3

D .A13 � B12DC
3 C13/E2; (24a)

D?
3 .C13E2 C C11Z3/ D 0: (24b)

Define also

J2 ´
�

E 0
3 0 Z2

�

and J3 ´

2

4

Z3

0

E2

3

5 ;

where the partitioning corresponds to that of the “A”-matrix
in (20). A straightforward algebra yields then thatJ2 andJ3

satisfy the following equalities

J2.A � B1D0
2C2/ D A3uJ2; J2B1D?

2 D 0; (25)

.A � B2D0
3C1/J3 D J3A2u; D?

3 C1J3 D 0: (26)

Define also
Lt ´ J3Ls ; Ft ´ FsJ2; (27)
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�

NK1
NK3

NK2 0

�

D

2

4

AFL Lk B2

Fk 0 I

C2 I 0

3

5 and
�

NG1
NG3

NG2 0

�

D

2

6

6

4

At B2.F � Ft / B1 C Lt D2 B2

�.L � Lt /C2 AFL �.L � Lt /D2 B2

C1 C D3Ft D3.F � Ft / 0 D3

C2 �C2 D2 0

3

7

7

5

(32)

and finally

Lk ´

2

4

�E3.J2B1D0
2 C Z2E2Ls/

0

E2Ls

3

5 ; (28a)

Fk ´
�

FsE
0
3 0 �.D0

3C1J3 C FsE
0
3Z3/E 0

2

�

(28b)

(the partitioning corresponds to that in (20)), which satisfy

J2.Lk C B1D0
2/ D 0 and .Fk C D0

3C1/J3 D 0: (29)

The following result is essentially from [5]:
Lemma 3: OP is stabilizable iffA1i is Hurwitz and there

existZ2 andZ3 satisfying (23) and (24), respectively. If these
conditions hold, then all stabilizingK 2 H 1 and all the
corresponding stabilizedT ’s can be characterized by (5) and
(6) respectively, whereQ 2 H 1 but otherwise arbitrary and

�

NK1
NK3

NK2 0

�

D

2

4

Ak Lk B2

Fk 0 I

C2 I 0

3

5 ; (30)

�

NG1
NG3

NG2 0

�

D

2

4

At B1 C LtD2 B2

C1 C D3Ft 0 D3

C2 D2 0

3

5 ; (31)

with At D A C B2Ft C Lt C2, whereLt , Ft are as defined in
(27) andAk D ACB2Ft CLt C2, whereLk , Fk are as defined
in (28).

The lemma above is an extension of the state-space solution
of the one-side stabilization problem, presented in Lemma 2.
We see that, similarly to the one-side stabilization, also in
the two-side case the stabilized setting (31) is of the the
same order as the original problem, which means that the
stabilization procedure can be performed without rising the
problem complexity. An important difference between the
one and two-side solutions is due to the fact that in the one-
side problem the gainL is unconstrained. This property was
exploited in the previous subsection to construct a parameter-
ization satisfying (7). On the other hand, in the two-side case
the gain matricesFk andLk defined by (28) are constrained
and so is the matrixAt of NG2 and NG3 in (30).

To overcome this difficulty, our next step is to show that
the constraints on the gain matrices in (30) can be partially
removed, at the expense of the growing order of the resulting
stabilized setup. The following result, whose proof is omitted
from this paper but can be found in [5], shows that plugging
any stabilizing gain matrices satisfying (29) into (30) will
still render (5) a complete parameterization of stabilizing
solutions.

Lemma 4: Given thatOP is stabilizable, all stabilizingK 2

H 1 and all corresponding stabilizedT ’s can be characterized
by (5) and (6) respectively, whereQ 2 H 1 but otherwise
arbitrary and NKi and NGi , i 2 f1; 2; 3g, are given by (32) on

the top of this page, withAt as in Lemma 3 andAFL D A C

B2F C LC2, whereL, F are any matrices of an appropriate
dimensions satisfying

J2.L C B1D0
2/ D 0 and .F C D0

3C1/J3 D 0 (33)

and guarantee thatAFL is Hurwitz.
Although the choice of the gain matricesF andL in (32)

is still restricted by (33), it will be shown below that the
constraints imposed by these equalities are loose enough to
allow construction of parameterizations that satisfy (7).

Following the line of the one-side solution from the pre-
vious subsection, it may seems natural to chooseL and F

based on standardH 2 ARE’s [21,÷14.5]. Note, however, that
in the two-side case these equations, may be not solvable,
since even in stabilizable problems the pairs.A; C2/=.A; B2/

are not necessarily detectable/stabilizable. This issue can be
circumvented by introducing the following modified ARE’s
with shifted “A”-matrices

.A C LtC2/0X C X.A C Lt C2/

� .XB2 C C 0
1D3/.B 0

2X C D0
3C1/ C C 0

1C1 D 0 (34)

and

.A C B2Ft /Y C Y.A C B2Ft /
0

� .YC 0
2 C B1D0

2/.C2Y C D2B 0
1/ C B1B 0

1 D 0: (35)

These equations can be considered only ifZ2 andZ3 involved
in the definitions ofFt andLt are well defined. Namely, only
if (23) and (24) are solvable, which, however, is guaranteed
for any stabilizable problem. The following statements reveal
some properties of ARE’s (34) and (35).

Claim 1: Given thatOP is stabilizable, ARE’s (34) and
(35) have unique stabilizing solutions. Moreover, these solu-
tions are positive semi-definite.

Proof: Below we prove the statements for the equation
(34) only. The proof for the second equation can be con-
structed using similar arguments. According to [21, Corol-
lary 13.10], to prove the statement it is sufficient to show that
the realization

�

A C LtC2 B2

C1 D3

�

has no invariant zeros on the imaginary axis and is stabiliz-
able. To verify the former condition, note that invariant zeros
of this realization either coincide with the transmission zeros
or with the uncontrollable poles of the realization. By the con-
struction ofLt , the only source of imaginary-axis eigenvalues
in A C Lt C2 is theA3 sub-block, which is controllable from
B2. At the same time, the transmission zeros of the considered
system coincide with those ofG3 and can not be located
on the imaginary axes due toA3. The stabilizability of the
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Kopt D e�sh

�

AFL L

�F 0

�

�

�

AFL B2

F I

�

�h

8

<

:

2

4

�.A C B2F /0 .C1 C D3F /0C1Y �XL

0 �.A C LC2/0 �C 0
2

�B 0
2 D0

3C1Y 0

3

5

9

=

;

�

AFL L

C2 I

�

; (42)

kT optk2
2 D



















2

4

At B2.F � Ft / B1 C Lt D2

�.L � Lt /C2 AFL �.L � Lt /D2

C1 C D3Ft D3.F � Ft / 0

3

5



















2

2

�



















�h

8

<

:

2

4

�.A C B2F /0 .C1 C D3F /0C1Y �XL

0 �.A C LC2/0 �C 0
2

�B 0
2 D0

3C1Y 0

3

5

9

=

;



















2

2

; (43)

realization follows immediately by the construction ofLt ,
which completes the proof.

Claim 2: Given thatOP is stabilizable, the stabilizing so-
lutions of (34) and (35) satisfyXJ3 D 0 andJ2Y D 0.

Proof: As before, we will consider equation (34) only,
since the proof for the second equation can be constructed
using similar arguments. Pre- and post-multiplying (34) byJ 0

3

andJ3, respectively, and using (26) yields

A0
2uJ 0

3XJ3 C J 0
3XJ3A2u � J 0

3XB2B 0
2XJ3

C J 0
3C 0

2L0
tXJ3 C J 0

3XLtC2J3 D 0: (36)

Substituting the definitions ofLt , Ft and reorganizing the
equation above, we get

.A2u C LsC23E2/0J 0
3XJ3

C J 0
3XJ3.A2u C LsC23E2/ D J 0

3XB2B 0
2XJ3: (37)

By the construction ofLs , the matrixA2u C LsC23E2 is Hur-
witz. Considering the equality above as a Lyapunov equation
in J 0

3XJ3, which is constrained to be positive semi-definite,
and taking into account that the right-hand side of the equality
is positive semi-definite as well, implies thatJ 0

3XJ3 D 0 and,
as a result,XJ3 D 0.

The result of Claim 2 implies that the stabilizing solutions
of (34) and (35) satisfyXLtC2 D XJ3LsC2 D 0 and
B2Ft Y D B2FsJ2Y D 0, which, in turn, implies that they
satisfy also the standardH 2 Riccati equations. Note, however,
that stabilizing solutions of the shifted equations are not
necessarily stabilizing for the standard ARE’s. The relation
between the two-sideH 2 optimization problem with stability
constraints and non stabilizing solutions of standard ARE’s
was perceived earlier in [8], were a problem without preview
was studied and the notion of semi-stabilizing ARE solution
was introduced. In the current work, we use the shifted Riccati
equations as an alternative to the definition of semi-stabilizing
solutions. This is convenient in the context of numerical im-
plementation, since shifted equations can be solved using the
standard routines for computing the stabilizing ARE solution.

At this point we can choose the stabilizing gain matrices for
(32) as

F D �B 0
2X � D0

3C1 and L D �YC 0
2 � B1D0

2; (38)

whereX andY are the stabilizing solutions of (34) and (35)
respectively. It can be shown by straightforward algebra that

for this choice ofL andF the matrixAFL is Hurwitz. Note
also that the result of Claim 2 together with (38) imply that

.F C D0
3C1/J3 D �B 0

2XJ3 D 0; (39)

J2.L C B1D0
2/ D �J3Yc0

2 D 0; (40)

showing that the choice ofF and L, in (38) satisfies the
conditions of Lemma 4. Finally, it can be shown by straight-
forward, yet tedious, calculations that for this choice of the
gain matrices the conditions in (7) hold and

NG�
3

NG1
NG�

2

D

2

4

�.A C B2F /0 XB1.B1 C LD2/0 XB1D0
2

0 �.A C LC2/0 �C 0
2

�B 0
2 �F Y 0

3

5

D

2

4

�.A C B2F /0 .C1 C D3F /0C1Y �XL

0 �.A C LC2/0 �C 0
2

�B 0
2 D0

3C1Y 0

3

5 : (41)

At this point, substituting (30) and (41) into (10), (11) yields
the main result of the current paper.

Theorem 3: Let G be given by its minimal state-space
realization (19), having the structure specified by (20), (21).
ThenOP is solvable iffA1i is Hurwitz and there existZ2 and
Z3 satisfying (23) and (24) respectively. If these conditions
hold, then the optimal solution and the corresponding minimal
kT k2

2 are given by (42) and (43), respectively, whereAt is as
defined in Lemma 3,X , Y are stabilizing solutions of ARE’s
(34), (35) andAFL D A C B2F C LC2 with L, F as defined
in (38).

Theorem 3 concludes the work, providing an explicit and
numerically feasible solution ofOP. An important difference
between the one- and two-side solution is that the latter
relies on the modified ARE’s, withA matrices shifted by
terms obtained from the solution of the constrained Sylvester
equations (23) and (24). The computation of these terms can
be complicated by the fact that (23a) and (24a) may have
multiple solutions. It may be shown however that, taking into
account the constraints (23b) and (24b),Z2 andZ3 are unique
once they exist and there exists an efficient method for their
calculation, see [3], [5] for more details.

IV. CONCLUDING REMARKS

In this paper we have studied theH 2 two-side model
matching problem, which can be considered as a unified
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setting for control and estimation problems with preview
and asymptotic behavior constraints. As a first step, recent
results from [3], [5] are used to resolve asymptotic behavior
constraints and to reduce the problem to an unconstrained
L2 optimization problem. Then, the optimization problem is
solved using standard Hilbert space arguments. This proce-
dure results in explicit state-space formulae for the optimal
solution and for the optimal achievable norm. The solution
relies upon two constrained algebraic Sylvester equations, as-
sociated with asymptotic behavior, and two algebraic Riccati
equations (ARE’s), which do not depend on the length of
preview.

In the one-side case, the ARE involved in the solution is
not affected by asymptotic behavior constraints and is actually
the standardH 2 Riccati equation. In the two-side setting,
however, the situation is more complicated, since even in
stabilizable problems the standard Riccati equations might
have no stabilizing solutions. In this work, the two-side prob-
lem was solved in terms of stabilizing solutions of modified
AREs with “A” matrices shifted by terms obtained from the
solutions of the Sylvester equations. This can be considered
as an alternative to the concept of a semi-stabilizing solution
of ARE proposed in [8].

Practical merits of the results presented in this paper are
demonstrated in [5] by means of laboratory experiments.
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