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On the H? Two-Side Model Matching Problem with Preview

Maxim Kristalny and Leonid Mirkin

Abstract— The H? optimization problem with preview and e G u
asymptotic behavior constraints is considered in a general two- _ 7
side model matching setting. The solution is obtained in terms of
two constrained Sylvester equations, associated with asymptotic
behavior, and stabilizing solutions of two algebraic Riccati equa- Gs H K H eth G,
tions. The Riccati equations do not depend on the preview length,

yet are affected by asymptotic behavior constraints and are
thus different from the standard H?2 Riccati equations arising
in problems with no steady-state requirements or in one-side
problems.

(a) Control setting

I. INTRODUCTION AND PROBLEM FORMULATION

Numerous estimation and control problems fall into the
category of problems with information preview. For example,
in many communication and signal processing applications,
certain delay between estimation generation and estimated
signal is tolerable. In such problems the allowed delay may Fig. 1. Model matching with preview
be interpreted as availability of future measurements within
a constant preview window. Also in some tracking and dis-
turbance attenuation problems, e.g., those arising in roboti
or active suspension control, preview of command and/ _ _ . . L
disturbance signals may be available to a controller. Clearlﬁﬁ The o_ne-sm!e version of model matching W'.th PrEview, 1.€.,
availability of preview can potentially improve the perfor- € settln_g W.'th enher?z - Iooor G3. = [ is currently
mance of the controller or the estimator. In this work, thé{‘le" studied in bothH* and H* settings, [11]-{13]. Yet,

guestion of how to exploit this potential will be addressed ifhany pr_oblems of mtergst,_sqch as measured d|stu_rbance
the framework of a general > model matching optimization attenuation, etc., have an intrinsic two-side structure. This mo-
Both estimation and open-loop control problems with in_tivates our study of the general two-side model matching with

formation preview can be cast as a unified setting referrd €VIEW, which, to the best of our knowledge, has not been

to as model matching with preview. Moreover, many CIc)Seda_lddressed in the literature yet. In this work we focus on the

loop control problems with preview can be also reduced t@ﬂ optimization problem, which accounts for both transient

this setting using the Youla-Kucera parameterization [6], [Zo\gnd asymptotic behavior of the underlying control/estimation

Two different representations of model matching with previewYStem and can be formulated as follows.

are depicted in Fig. 1. In these block diagrars, G, and OP: Given proper rational transfer matric6s, G, G; and a

G represent some given causal LTI systems, containing the ~¢onstank > 0, find K € H*, which guarantees

problem data and (possibly unstable) weights. The design T =e""G, - G3KG, € H*N H® (1)
parameterK represents an estimator/controller/ Youla pa- L

rameter. The block diagram depicted in Fig. 1(a) is natural in and mllnlmlzes}.|T||2. . . ]
control applications, where the reference and/or the measurgl€ one-side version of this problem with; = 7 will
ments of the disturbance signals are available to the controlldgreafter be referred to as one-side problem and will be
in advance. The block diagram in Fig. 1(b) is relevant fofl€noted byoPo. .
estimation problems, where preview is available due to the 1€ following remarks may be useful for understanding and
latency allowed in estimation generation. It is readily seelfitérpreting the problems formulated above.

that these two settings are equivalent up to a shift of the time 1) The transfer matrice&,, G, andG; may not belong
axes. For the sake of convenience and without loss of the 10 H* due to unstable weights, used for description
generality, in this work we will adopt the setting depicted on ~ Of the underlying control/estimation system. In this
Fig. 1(b), where the availability of preview is reflected by the ~ context, the stability constraifit € /* in (1) accounts

(b) Estimation setting

gerall system in this case renders its stability equivalent to
e conditionT € H®.

causal delay element®. In particular, the causality of the for asymptotic behavior of the system subject to non-

decaying input signals, modeled by the weights insta-

(g;fr‘]'tSNrgsfggg)og‘;as supported BYIE ISRAEL SCIENCE FOUNDATION bilities. More details on casting asymptotic behavior
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2) The optimization criterion|T ||,, accounts for transient one-side counterpart. Recently, it was shown, see [3], [5], that
behavior of the underlying system. under mild simplifying assumptions, all stabilizing solutions
3) Inthe case when the considered model matching setting the general model matching problem can be characterized
originates from an open-loop control or an estimatiomy an affine parameterizations in terms of a single stable
problem, the design parametgrhas to be stable and but otherwise arbitrary parameter. This result turns out to be
causal in order to guarantee implementability of thdighly relevant in the context dDP and serves as a starting
resulting solution. In this context, as well as in casgoint for the current study.
whenk represents a Youla parameter, the requirement In this work we reconsider the stabilization procedure from
K € H* is natural. [3], [5] and rewrite the parameterization of all stabilizing solu-
4) The constank represents the length of preview avail-tions in a form, suitable for the treatment of the optimization
able in the problem. One way to verify this is by notingproblem. This enables us to extend the existing methods of
that multiplication ofT" by e” does not change its>  the solution of the one-side problem to the two-side setting.
norm and, as a result, the optimization criterion can bgve end up with an explicit and numerically efficient solution,
rewritten as which provides insight into the structure of the resulting
T2 = 1€ T > = |G1 — G K€" G| controller/estimator. The solution is given in terms of two
matrix Sylvester equations, associated with stabilization, and
Thus, shifting the time axes, the presence of the delayo algebraic Riccati equations. The latter equations differ
element in (1) can be interpreted as the presence off@m the standard#? Riccati equations by a shift ofi-
preview in the input oK. At this point, we can redefine matrices, which relies on solutions of the aforementioned
the design parameter @ := Ke" ¢ e"H> and sylvester equations.
rewrite the optimization criteria g6, — G3K G |- In We will considerOP under the following set of assump-
this representation, the increasehoéan be interpreted jgps:
as the relaxation of the causality requirement &n
and infinite preview length corresponds to the proble Gi(00) =0,
without causality constraints on the design parameter..A,: G,(co) and Gs(oco) have full row and column rank
Studies of H2 problems related t®P in the context of respectively,
preview control go back to the '60s, [1], [17], [18]. In esti- A5: (3, U 33) NjR = 0,
mation framework, the interest to problems with information L (T, UD5) N C € R,
preview, referred to as smoothing, can be traced even to earlier”
decades [19]. In the late '80s and mid '90s, several results Where3z,; andP,,; refer to sets of all zeros and poles®y);
the discrete-time setting were published, see [14], [15], arf@spectively. The first assumption is technical and imposes no
over the past few years the area of continuous-time previd@ss of the generality. Indee@P is solvable only if there
control gained a renewed interest. The two-blétkpreview €xistsK that renders” € H? and, in particular, guarantees
tracking was addressed in the 2DOF setting in [10], [16] anthat7 (co) = 0. This, in turn, is possible only if there exists a
later on as a feedforward tracking in [2], [9], [13]. In [13] MatriX Dy such thatG, (co) — G3(00) Dk G2(00) = 0. In this
also the multiple preview case was addressed. The proble@se, the design parameter can be shifteki as K —e™" Dy
considered in the references above, however, correspondt@yield a problem in whichA, is satisfied. The assumptions
the one-side setting with no stability constraints. A problersd2 and.Az are standard and rule out problem redundancy and
with stability constraints was considered in the context ofingularity. The fourth assumption is practically not restric-
H® optimization in [11], [12]. Yet, also in these works thetive, since, typically, unstable poles presenOR originate
discussion and, as a result, the stabilization procedure dfém unstable weights with imaginary axis instabilities. This
restricted to the one-side case. A very general stabilizatig¥sumption rules out possibility of the coincidence between
problem corresponding to two-side setting was considered ifistable poles and zeros 6%, and facilitates the stabiliza-
[7], where a complete but rather complicate parameterizatidi®n procedure, see [3], [5] for more details.
of all stabilizing solutions was derived in terms of three The paper is organized as follows. In Section Il the ratio-
independent parameters. This result was exploited in [8] toale behind the proposed solution is described in frequency
solve general finite-dimensiona¥? optimization problem domain. In Section Il explicit formulae oDP solution are
with stability constraints. The solution method proposed inlerived using the state-space machinery. Finally, some con-
this work, however, is not readily extendible to the probleneluding remarks are available in Section IV.
with information preview. Notation: The open left and right halves of the complex
Solution of the one-side problen®Po, can be derived plain are denoted b~ andC* respectively. For any left-
by combining stabilization procedure from [11], [12] andinvertible 4 € R"™™, the matricesd™ € R™" and AL ¢
classicalL? optimization arguments. Yet, the extension of thisg»—x» denote a pseudo inverse df and its complement
method to the general two-side setting is by no means trivightisfying
and constitutes the main challenge of the current work. The
difficulties arise already in the stabilization stage, where the AT 1 AT
L . . A= , det #0.
general problem exhibits a more complicate nature then its [ At ] [ 0 ] [ At }

1696



Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems — MTNS 2010« 5-9 July, 2010 - Budapest, Hungary

Similarly, if 4 is right-invertible, A¥ € R™" and A* € where

R™*m—1 gatis P = - ~
isfy |: Ky K; ] o |: YsM3G M,Y, 'f:MsUz + UsM, M3 ]
A[ AY AL ]=[T1 0], det[ A4+ At ]#o0. K> M, ’
. . . . . G G XsMsG My X, + VN, + N3Vs N
Given a transfer matrig (s), its pseudo inverse is denoted by [ Gl } ] = [ SR 21\7+ 2o AT ]
2 2

G* and its conjugate is denot6s (s) and defined a& ™~ (s) =
[G(—s)]'. ForG € L?, (G)4 refers to the projection o on  andQ e H> but otherwise arbitrary.

H?. For any rational strictly proper transfer function given by Proof: Using the finite-dimensional result of [5], it can
its minimal state-space realizatiGi(s) = C(s/ —A)~' B, the  pe shown that anyk given by (5) stabilizes the problem
completion operator constitutes an FIR linear system and éd that the corresponding stabiliz&ds given by (6). The

defined as only thing left is to show completeness this parameterization.
A B [ AlB To this _end, using completion operator, we may rewrite the
TGO} = |—c=an o |~ € clo | expression fof” as follows

More details on this definition can be found in [11]. The left T = —m4{G} + G| — G3KG,,
and the right coprime factorizations are abbreviated as Icf an

rcf, respectively. Doubly coprime factorizations for each of! , S .
the transfer matrices involved @P are denoted by FIR system, which does not affect the stabilization. This

reduces the original stabilization problem to a similar but

G =NM"'= Mi—lj\?l-, (2a) finite-dimensional one, which was considered in [5]. The
X, Y M T I 0 proof can be completed now by noting that, according to [5],
[ NN ] [ N 7 ] = [ 0 1 } (2b)  affine parameterization of a form (5) is complete for any

finite-dimensional two-side problem that satisfids.4. [ |
fori = 1,2,3. The sets of all poles and zeros Gf(s) are Following the ideas from [12], we will assume without
denoted byR; and 3;, respectively. The notion djilateral  |oss of the generality thaG,, G, and G; involved in the
Diophantineequation (BDE) on rational matrices refers to the parameterization of all stable’s in (6) satisfy

equation of the formr X + YN = P, whereM,N, P € H*® o o o

are given and(, Y € H> are to be found. G:Gy =1, G;Gs=1, G;G\Gy e H. (7)

Il. FREQUENCY DOMAIN SOLUTION It will be shown in the next section that such parameterization
in thi . ¢ d ) lution®F is d can alway be constructed. The properties in (7) facilitate the
n this section a frequency domain solution IS de- bgerivation of compact formulae for the frequency domain

nved..The resglts prgser_ned here are not reaFilly Computabey ;sion and greatly simplify state-space derivations in the
the aim of this section is to explain the main steps of thﬁext section

solution, Whi_Ch later on will b_e implemented using the state- The result of Lemma 1 involves bilateral Diophantine equa-
space t_echnlques_to get the final result. . .. tionst, which renders it more complicated then its one-side
Ouir first step will be to resolve the stability cpng.tra_mt 'm'counterpart from [11], [12]. Still, similarly to the one-side

Fosﬁd o anc;j to reducsthe probble(;n to thé_optlrﬁlzatlon. case, it yields an affine parameterization of all stabilizing
N t. € one-side case, this can be done using the parametgfy, iong given in terms of single parameter. As a result,
ization of all stabilizing solutions available from [11], [12]. reformulatingOP in terms of a new paramete®, we can

AIthou_gh the two-§|de stabilization problem is of a MO asolve stability constraints without changing the structure of
compllcat_e r_laturg, itturns ou_t, [3]. [5], that underassumpt!orme optimization criteria. Namely, we can reduce the problem
Ay, Az similar—in terms of its structure—parameterizatior} | finding 0 € H> that minimizes theL? norm of the

exists also in two-side case. The following result can bepression given in (6). Note that under assumptidasand

formulated. " A o
_ _ - Aj there exisG#,G¥ e L. Post- and pre-multiplying (6) by
Lemma 1: Let.A,4 hold. Then there exist8 € H* that these transfer functions yields

stabilize (1) iff M3G, M, € H> and there exist),, V», Us,

andV; in H* that satisfy the following BDE's: 0 =e*"G¥G,G¥ - GITGE,

N3U, + VoM, = X3M3G MY, (3)  showing thatT € L2 only if 0 € L? and implying that

UsNy + M3Vs = Y3 M3G i My X, (4) the domain of the optimization parameter can be effectively

B o replaced byo € H?.
If th_e_se conditions are satisfied, t_hen &l € H¥ that Thus,OP reduces to thé.? optimization
stabilize (1) and all the corresponding stabiliZEd can be ) o
characterized as Q%" = argmin|e™" G, — G50 G|, (8)
~ B ~ QeH?2
K =e"K + K;0K,, (5)

. _ which can be solved using the standard Hilbert space argu-
I'=¢e"61-G300,, )  ments. A geometric interpretation of this problemis presented
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Fig. 3. Optimal solution structure

Fig. 2. Geometric interpretation of (8)

Ill. STATE-SPACE SOLUTION

in Fig. 2. By the Projection Theorem., the optimal §o|ution can Having described the main steps of the solution in the
be characterized by the orthogonality of the optimal error tﬂequency domain, we aim at implementing them using state-

the subspace generated®yQG., i.e., by space techniques in order to derive computable formulae for
(€3G — G50°"'G,.G30G,), =0, YQ € H. the optimal solution and for the achievable performance.
Because the transfer function of the adjoint operator is th& The one-side problem
conjugate transfer function, the condition above reads As a preliminary step before considering the general two-
(GT(e7"Gy — G30%'G2)G5. 0), =0, YO € H>. side problem, let us focus on its one-side vers®Rp, with
—sh
Using (7), we then obtain that the optimalmust satisfy r= G — KGa. (12)
"Gy GGy — 0%l e H?, In this case we can ch_oos§é3, Ns, M5, andY; as identity
o ) matrices and{; = 0. This renders BDE’s (3) and (4) trivial,
which, in turn, yields with possible solutions
opt _ —shpo~m A~
0% = (€76761G3), - ©) Up=0, Va=0. Uy=0, and Vi =G ,MX,.
ghe expression for the minimal norm of the error can be givep, .o simplifies the solutio®Po considerably.
y Consider the following composite system, given by its
172 = G113 — 1G5 Q°PGa 2 = [IG1 ]2~ |Q°Y2,  minimal state-space realization
where we made use of the facts tiiat and G, are co-inner G A| B
and inner, respectively (cf. (7)). G .= [ Gl } = C | 0 |. (13)
Going back to the original problem, i.e., substituting (9) 2 Cy | D,

into the parameterizations from Lemma 1, yields the maig, simplify the exposition, assume hereafter that
result of the current section. '
AS: DzDé = I,

Theorem1: Let the conditions of Lemma 1 hold and as-*"> ~ . _
sume that parameterizations (5) and (6), are constructedwWich is a matter of scaling and can thus be assumed without

satisfy (7). ThenOP is solvable and the optima& with the loss of the generality providedd, holds true. Following
corresponding minimd|T || are given by the solution line described in Section Il, our first step is to

KM = e &, 4 K€ G G,GT)s K (10) reduce the problem to the* optimization. The result below
-0 3= M i A is essentially from [11], [12].
IT%3 = 1G5 — (e G5 G1GY), II3- (11) Lemma2: LetG be given by its minimal state-space real-
Note that, according to (7), the syste@} G, G5 is anti- ization _(13). Then there e_xistK € _H°° stabilizin_g (12) iff
causal. Therefordirg == (6" Gy G,Gy)4 is an FIR system (A4,Cy) is detecftable. If_thls condition holds anh_j!s_chosen
of the form so thatd + LC, is Hurwitz, then allK € H* stabilizing (12)
Frr = 111G GGy and all the corresponding stabiliz&ts can be characterized
by (5) and (6) respectively, whei€; = I, Gs = I,
The structure of the optimal solution is presented in Fig. 3 and _

has a clear interpretation. The presence of the delay element K, Ar | L

implies that the upper branch of the diagram does not make [ K> ] =] € |0 | (14)
use of the information preview and acts as if no preview was G |l

available in the problem. The systekiy does not depend on . G

the preview length: and coincides with the optimal solution G:= [ Gl ] =| G 0 . (15)
of the problem without preview. On the other hand, the lower 2 e D,

branch of the diagram, based on the FIR block, accounts fﬁﬁdAL — A+ LG, andQ € H*™ but otherwise arbitrary.
the existence of preview and makes the difference between ther,o |emma above yields a state-space representation of

solutions ofOP and the standard preview-free optimization. {4e gne-side version of Lemma 1, which enables one to

1See [3], [4] to find more details on the bilateral Diophantine equation overreplace th? Or'g'n_al_ mOde_I'ma.tChmg setup W'th a stabilized
R'Hoo and its relation to stabilization problem. one, associated witfi; andG,. It is worth mentioning that the
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order of the state-space realization (15), which corresptindsin addition to the assumptiodls we will assume hereafter
the stabilized model-matching setup, equals to the order of thieat
original systemG in (13). This shows that the stability con- 4. D,Ds=1.
s}rg}mts obe)IPocan be resolved without increasing complexnyNote that, similarly tads, this assumption does notimply any
° Theepsg)steer;nf K,, G, andG,, givenin (14), (15), are not loss of generality.

1y 2, 1 2 1 ] H _ai H H H :
unique due to the freedom in the choicelaf This freedom Since the two-side solution is more complicated then its

) o . ne-side counterpart and involves nontrivial BDE’s, (3), (4), a
;32 :ﬁ de)éﬂlgggg to get parameterizations that satisfy (7). fﬂore detailed state-space structure of (19) is required to carry

out the derivations. Bringing in the canonical decomposition
L =-YC,— BD), (16) of the “A” matrix of (19) with respect to the second input and

. - . . the second output leads to the following form:
whereY > 0 is the stabilizing solution of the following P g

algebraic Riccati equation (ARE): As A Az | B Bia
, , , , , 0 Ay Axz| By O

The existence of a unique stabilizing solution of this equation Ciu Cp Ci3| 0 Ds

for any stabilizable problem is guaranteed My and the 0 0 Cyu|Dy O

detectability of(4, C;), see [21]. It can now be verified by where the paif 4, B;,) is controllable and the paitd, Cs3)
straightforward calculations that in this case (7) hold and s observable. Without loss of generality, we may assume that

_ —A | the realization above has an additional structure:
G,G; = L 12 | (18)
-C1Y |0 Azs O Asu O
=10 a BT 0 4k @Y
Substituting (14) and (18) into (10) and (11) leads to the 2u 3s )
following explicit solution ofOPo: 10 e = 0 x Ao = | % (22)
Theorem?2: Let G be given by its minimal state-space 7l x BT x 0[PP o |
realization (13). The@Pois solvable iff(4, C,) is detectable. where A, and Asc are Hurwitz, A,, and A, are anti-stable,

In this case, the optimak and the corresponding minimal 5, «» stand for irrelevant blocks. Define matricés and
IT3 are given by E; through the equalities

KOPL_ st [ ACL g } ArEy = EyAy, and EjAs = Ay, E,
w1

e AL and pick anyF, and L, such thatd; + By, F,E} and 4, +
. {[ LG ]} [ L ] E,L,C,3 are Hurwitz.

-Gy | 0 G | ! To derive the state-space form of Lemma 1, introduce the
and following pair of constrained Sylvester equations:
| TOP2 = H|: A | B+ LD, i| 2 A3uZr—Z5(Ay— B3 D3 Ca3) = E3(A13—B11 DS Cy3), (23a)
z=
G 0 2 i (E}By, + Z2Bx) D =0, (23b)
AL |G
[T e

whereY is the stabilizing solution of ARE (17) and is as Z3A5 — (A3 — B1,D3 Ciy) Z3

defined by (16). = (413 — BiuDF C13)E,,  (24a)
It is worth mentioning that the solution in Theorem 2 is

L —
based on a standa? algebraic Riccati equation, see [21, D3 (Ci3E> + CuZs) = 0. (24Db)
§14.5]. In the next subsection we shall see that this is no longglefine also
true for the solution of the two-side problem. 7
3
J,:=[E{; 0 Z,| and J3:=| 0 |,
B. Thetwo-side problem E,

We are in the position to extend the state-space solution ahere the partitioning corresponds to that of the “A’-matrix
the one-side problem from the previous subsection to the twin (20). A straightforward algebra yields then thatand J;
side setting. To this end, consider the following compositgatisfy the following equalities
system, which is a two-side counterpart of (13) and is given , N
by its minimal state-space realization Jo(A=B1DyCo) = Asy o, J2B1Dy =0, (25)

(A—B,D,C\)J3 = J3Az,, D3CiJ3=0. (26)
(19) Define also

L,:=J3Ls, F,:=F,J,, (27)
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o Ap. | Le B L A, By(F—F)| Bi+L:Dy B,
K K _ | ag [CO0 G| Z@L=LaC  Ap | =(L-LoDy By | g

K, 0 G, 0 Ci + D;F, Ds(F—F,) 0 Ds

C, ) D, 0
and finally the top of this page, withl, as in Lemma 3 andlpp, = A +

B,F + LC,, whereL, F are any matrices of an appropriate
—E3(J2B1 Dy + Z,E> Ly) ; . L
L= { o 7 (28a) dimensions satisfying

E> Ly Jz(L + B]Dé) =0 and (F + DgCl)J3 =0 (33)

Fe=[ KEy 0 —(D3CiJs+ KESZ)E; | (28D) and guarantee thaty; is Hurwitz.

(the partitioning corresponds to that in (20)), which satisfy  Although the choice of the gain matricésand L in (32)
is still restricted by (33), it will be shown below that the

Jo(Lx + B1Dy) =0 and (Fx + DiCy)J3=0. (29) constraints imposed by these equalities are loose enough to
allow construction of parameterizations that satisfy (7).

Thf follovxghgorgsfult Its S.Tsegtllal.z:{?m [3]: i d th Following the line of the one-side solution from the pre-
emma s. IS stabilizable 114, 1S AUrwiz and there -, subsection, it may seems natural to chobsand F

existZ, andZ; satisfying (23) and (24), respectively. IftheseIoaseol on standai2 ARE's [21,514.5]. Note, however, that

conditions hOId’ th?? aII’ stabilizing e Hoo_ and all the in the two-side case these equations, may be not solvable,
corresponding stabilize@’s can be characterized by (5) andSince even in stabilizable problems the paitsC,)/(4, B,)

(6) respectively, wher@ € H* but otherwise arbitrary and are not necessarily detectable/stabilizable. This issue can be
circumvented by introducing the following modified ARE’s

[ P ] = (30)  with shifted “A’-matrices
K, O
G, G A; |Bl+LtD2 B, (A+L’C2)X+XI(A+1;tC2) / /
[ g o ] =| G +D:F| 0  Ds|. (3) — (XBy + C[D3)(ByX + DyCy) + C[C; =0 (34)
© b 0 and

with A, = A+ B, F, + L,C,, whereL,, F, are as defined in )

(27)andAy = A+ B, F, + L,C,, whereLy, Fy are as defined (A + B2F1)Y + Y (A + By Fy)

in (28). —(YC, + B D))(CY + DyBy) + BiB; =0. (35)
The lemma above is an extension of the state-space solution

of the one-side stabilization problem, presented in Lemma 21€S€ €quations can be considered oni,iindZ; involved

We see that, similarly to the one-side stabilization, also iff! the definitions off; andL, are well defined. Namely, only

the two-side case the stabilized setting (31) is of the thb (23) and (24) are solvable, which, however, is guaranteed
same order as the original problem, which means that tfiar any stabilizable problem. The following statements reveal

stabilization procedure can be performed without rising th%ome_propert_les of ARE's (_34) angl_ (35). ,

problem complexity. An important difference between the Claiml: Given thatOP is stabilizable, ARE's (34) and
one and two-side solutions is due to the fact that in the on&35) have unique stabilizing solutions. Moreover, these solu-
side problem the gaif is unconstrained. This property was!iONS are positive semi-definite. .
exploited in the previous subsection to construct a parameter- 700f: Below we prove the statements for the equation
ization satisfying (7). On the other hand, in the two-side cadé4) only. The proof for the second equation can be con-

the gain matrices, and L defined by (28) are constrained structed using similar arguments. According to [21, Corol-
and so is the matrix, of G, andGs in (30). lary 13.10], to prove the statement it is sufficient to show that

To overcome this difficulty, our next step is to show thaf"€ realization

the constraints on the gain matrices in (30) can be partially [
removed, at the expense of the growing order of the resulting
stabilized setup. The following result, whose proof is omittethas no invariant zeros on the imaginary axis and is stabiliz-
from this paper but can be found in [5], shows that pluggingble. To verify the former condition, note that invariant zeros
any stabilizing gain matrices satisfying (29) into (30) willof this realization either coincide with the transmission zeros
still render (5) a complete parameterization of stabilizingr with the uncontrollable poles of the realization. By the con-
solutions. struction ofL,, the only source of imaginary-axis eigenvalues
Lemma 4: GiventhatOP is stabilizable, all stabilizingk € in A + L,C, is the A; sub-block, which is controllable from
H*> and all corresponding stabilizgts can be characterized B,. Atthe same time, the transmission zeros of the considered
by (5) and (6) respectively, wher@ € H> but otherwise system coincide with those af; and can not be located
arbitrary andk; andG;, i € {1,2,3}, are given by (32) on on the imaginary axes due tds. The stabilizability of the

A+ L,Cy | B,
Cy D;
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—(A+ ByF) (C,+ DsF)YC,Y | —XL
Apr | L Apr | B ) ) Apr | L
e e [ [ g are e [er] @
—B, DiC,Y | o ?

A, By(F—F)| Bi+L.D, 7|
IT2 = || —(L—L)C,  Ap. | —(L—L,)D,
2

Ci+ DsF;  D3(F—F,) | 0
—(A+ BFY (Ci+ DsFYC Y |—xL 1) |
— |7 0 —(A+ LG | -C} ., (43)
2

—B) D,CiY | 0

realization follows immediately by the construction bf, for this choice ofL and F the matrix A, is Hurwitz. Note

which completes the proof. B also that the result of Claim 2 together with (38) imply that
Claim2: Given thatOP is stabilizable, the stabilizing so- , ,
lutions of (34) and (35) satisf{J; = 0 andJ,Y = 0. (F + D3C)J5 = =B, XJ3 =0, (39)
Proof: As before, we will consider equation (34) only, Jo(L + B1D3) = —J3Yc, =0, (40)

since the proof for the second equation can be constructe,

: . . sﬁowin that the choice of' and L, in (38) satisfies the
using similar arguments. Pre- and post-multiplying (34by conditic?ns of Lemma 4. Finally, it can be( sh)own by straight-
andJ;, respectively, and using (26) yields ' '

forward, yet tedious, calculations that for this choice of the

Ay X T+ XT3 Ao — J,XB2 By X s gain matrices the conditions in (7) hold and
+ J3CoLL X5 + J3XL,Cods = 0. (36) GGGy
Substituting the definitions of.,, F, and reorganizing the [ —(A+ B>F) XBy(By+ LD,) | XB, D}
equation above, we get = 0 —(A+LG) -
T B —FY 0
(Aou + LsCo3 Er) J3X /3 [ —(A+ B>F) (C,+ DsF)YC,Y | —-XL
+ JXJ3(Asy + LyCosEs) = JLXByBLXJ5.  (37) - 0 —(A+LGC) |-} |. (41)

By the construction of.,, the matrix4,, + L;C»3E, is Hur- - —5 D3CY 0

witz. Considering the equality above as a Lyapunov equatioft this point, substituting (30) and (41) into (10), (11) yields
in J5XJs, which is constrained to be positive semi-definitethe main result of the current paper.
and taking into account that the right-hand side of the equality Theorem3: Let G be given by its minimal state-space
is positive semi-definite as well, implies th&tXJ; = 0 and, realization (19), having the structure specified by (20), (21).
as aresultXJs; = 0. B ThenOPis solvable iff4;; is Hurwitz and there exist, and

The result of Claim 2 implies that the stabilizing solutionsZ, satisfying (23) and (24) respectively. If these conditions
of (34) and (35) satisfyXL,C, = XJ;L,C, = 0 and hold, then the optimal solution and the corresponding minimal
B,F,Y = B,F;J,Y = 0, which, in turn, implies that they | 7|| are given by (42) and (43), respectively, whelreis as
satisfy also the standard? Riccati equations. Note, however, defined in Lemma 3X, Y are stabilizing solutions of ARE’s
that stabilizing solutions of the shifted equations are nqB4), (35) anddg. = A + B, F + LC, with L, F as defined
necessarily stabilizing for the standard ARE’s. The relatioin (38).
between the two-sid&? optimization problem with stability =~ Theorem 3 concludes the work, providing an explicit and
constraints and non stabilizing solutions of standard AREsumerically feasible solution ddP. An important difference
was perceived earlier in [8], were a problem without previevetween the one- and two-side solution is that the latter
was studied and the notion of semi-stabilizing ARE solutiomelies on the modified ARE’s, witd matrices shifted by
was introduced. In the current work, we use the shifted Riccatrms obtained from the solution of the constrained Sylvester
equations as an alternative to the definition of semi-stabilizingquations (23) and (24). The computation of these terms can
solutions. This is convenient in the context of numerical imbe complicated by the fact that (23a) and (24a) may have
plementation, since shifted equations can be solved using thriltiple solutions. It may be shown however that, taking into
standard routines for computing the stabilizing ARE solutioraccount the constraints (23b) and (245),andZ; are unique

At this point we can choose the stabilizing gain matrices foonce they exist and there exists an efficient method for their
(32) as calculation, see [3], [5] for more details.

F=-BX-DiC, and L=-YC,-BD;, (38) IV. CONCLUDING REMARKS

whereX andY are the stabilizing solutions of (34) and (35) In this paper we have studied th#2 two-side model
respectively. It can be shown by straightforward algebra thatatching problem, which can be considered as a unified
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setting for control and estimation problems with preview[4]
and asymptotic behavior constraints. As a first step, recenllt
results from [3], [5] are used to resolve asymptotic behavio
constraints and to reduce the problem to an unconstrained]
L? optimization problem. Then, the optimization problem is
solved using standard Hilbert space arguments. This procg]
dure results in explicit state-space formulae for the optimal
solution and for the optimal achievable norm. The solution(8l
relies upon two constrained algebraic Sylvester equations, as-
sociated with asymptotic behavior, and two algebraic Riccatj9]
equations (ARE’s), which do not depend on the length O[f10]
preview.

In the one-side case, the ARE involved in the solution is
not affected by asymptotic behavior constraints and is actualli!
the standardH? Riccati equation. In the two-side setting, 15
however, the situation is more complicated, since even in
stabilizable problems the standard Riccati equations mighlt3]
have no stabilizing solutions. In this work, the two-side prob*
lem was solved in terms of stabilizing solutions of modified14]
AREs with “A” matrices shifted by terms obtained from the
solutions of the Sylvester equations. This can be considerﬁ_@]
as an alternative to the concept of a semi-stabilizing solution
of ARE proposed in [8].

Practical merits of the results presented in this paper apee]

demonstrated in [5] by means of laboratory experiments.
[17]
REFERENCES
[18]
[1] E. K. Bender, “Optimum linear preview control with application to

vehicle suspensionASME J. Basic Eng., vol. 90, no. 2, pp. 213-221, [19]
1968.

[2] A. Kojima, “ H? performance in preview feedforward action,”Rnoc. [20]
16th MTNS, Leuven, Belgium, 2004.

[3] M. Kristalny and L. Mirkin, “On the parameterization of stabilizing
solutions to four-block model matching problems,Rroc. 18th MTNS  [21]

Symposium, Blacksburg, Virginia, US, 2008.

1702

——, “A state-space solution of bilateral diophantine equations over
RHoo,” Syst. Control Lett., vol. 59, pp. 226-232, 2010.

M. Kristalny, “Exploiting previewed information in estimation and
control,” Ph.D. dissertation, Technion-IIT, Haifa, Israel, July 2010.

V. Kucera, “Stability of discrete linear feedback systems,” Boston, MA,
p. 44.1, 1975.

K. Liu and T. Mita, “Parameterization of comprehensive stabilizing
controllers and analysis of its structure,” Rroc. 34th IEEE Conf.
Decision and Control, New Orleans, LA, 1995, pp. 4108-4113.

K. Z. Liu, H. Zhang, and T. Mita, “Solution to nonsingul&f, optimal
control problem with unstable weights$yst. Control Lett., vol. 32, pp.
1-10, 1997.

G. Marro and E. Zattoni, F2-optimal rejection with preview in the
continuous-time domainAutomatica, vol. 41, pp. 272-285, 2005.

L. Mianzo and H. Peng, “A unified Hamiltonian approach for LQ
and H~, preview control algorithms,’ASME J. Dynamic Systems,
Measurement, and Control, vol. 121, pp. 365-369, 1999.

L. Mirkin, “On the H®° fixed-lag smoothing: How to exploit the
information preview,”Automatica, vol. 39, no. 8, pp. 1495-1504, 2003.
L. Mirkin and G. Tadmor, “On geometric and analytic constraints in
the H® fixed-lag smoothing,1EEE Trans. Automat. Control, vol. 52,

no. 8, pp. 1514-1519, 2007.

A. A. Moelja and G. Meinsma, “H2 control of preview systems,”
Automatica, vol. 42, no. 6, pp. 945 — 952, 2006.

E. Mosca and A. Casavola, “Deterministic LQ preview tracking con-
trol,” IEEE Trans. Automat. Control, vol. 40, no. 7, pp. 1278-1281,
1995.

E. Mosca and G. Zappa, “Matrix fraction solution to the discrete-time Ig
stochastic tracking and servo problem&EE Trans. Automat. Control,

vol. 34, no. 1, pp. 240-242, 1989.

U. Shaked and C. E. de Souza, “Continuous-time tracking problems
in an H°° setting: A game theory approacHEEE Trans. Automat.
Contral, vol. 40, no. 5, pp. 841-852, 1995.

T. Sheridan, “Three models of preview contrdlZEE Trans. Numan
Factors, vol. 7, no. 2, pp. 91-102, June 1966.

M. Tomizuka, “Optimal continuous finite preview problemEEE
Trans. Automat. Control, vol. 20, no. 3, pp. 362-365, 1975.

N. Wiener, Extrapolation, Interpolation and Smoothing of Sationary
Time Series.  Cambridge, MA: The MIT Press, 1949.

D. C. Youla, H. A. Jabri, and J. J. Bongiorno Jr., “ModernWiener-Hopf
design of optimal controllersEEE Trans. Automat. Control, vol. 21,

no. 3, pp. 319-338, 1976.

K. Zhou, J. C. Doyle, and K. GloveiRobust and Optimal Control.
Englewood Cliffs, NJ: Prentice-Hall, 1995.





